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\\\ =~ .. PREFACE
\srhis document contains the proceedings of the Air Force/NASA Workshop on
Modeling, Analysis, and Optimization Issues for Large Space Structures held in
Williamsburg, Virginia, May 13-14, 1982. _ The workshop was jointly sponsored by

NASA Langley Research Center, the Air Force~Qffice of Scientific Research, and

the Air Force Wright Aeronautical Laboratories.~yThe theme of the workshop was
modeling, analysis, and optimization of large space structures, including structure-
control interaction. Speakers were drawn primarily from industry, with partici-
pation from universities and government. The workshop was organized into three
sessions: mathematical modeling, analysis methodology, and optimization for P
controllability. Results of the workshop were discussed in a final session.-;7{)é”
Sumnaries of the sessions were presented by session technical secretaries, and
general discussion followed. 1In addition to this fourth session, ample time was
allowed within each session for discussions on topics of individual papers. Intro-
ductory remarks were made by Dr. Michael J. Szlkind, Air Force Office of Scientific
Research, and Mr. Robert C. Goetz, NASA Langley Research Center. A list of workshop
attendees is included in the front of this document.

The workshop organizers express their appreciation to the session chairmen,
speakers, and panelists, whose efforts contributed to the technical excellence of
the workshop. Session chairmen were Dr. Larry D. Pinson, NASA Langley Research
Center; Mr. M. A. Ostgaard, Air Force Wright Aeronautical Laboratories, and Dr.
V. B. Venkayya, Air Force Wright Aeronautical Laboratories. Thanks are also due
to session secretaries Dr. J. Housner, Dr. John Gubser, Dr. V. B. Venkayya, and
Mr. B. Hanks.

Larry D. Pinson
NASA Langley Research Center
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\ " INTRODUCTION

Eélhe workshop presentations ranged over many topice in large space structures,
including structure-control interaction, structural ané structural dynamics
modeling, ‘' thermal analysis, testing, design, and optimjcation. The interdisciplinary
area of structure-control interaction, which is a challenge to analysts, designers,
and test engineers, was clearly emphasized. Not addre:sed in the workshop was the
important subject of structural deployment.

Structure-control interaction is emergqhé as a separate discipline in which
structural dynamicists and controls engineers each become proficient in both areas
to accomplish viable designs. Performance requirements dictate an integrated
approach to design. The necessity for this merging of structural dynamics and
controls disciplines has become apparent because of extreme requirements in potential
large space structures applications. Furthermore, research is now ongoing in
aeronautics in the areas of active flutter suppression, load alleviation, and
reduced static stability, all of which require consideration of the control of
structural motion at a rate that excites structural vibration. Presentations on
this subject at the workshop revealed the immaturity of the technology. Theoretical
considerations dominate research. Most controllers are considered to be ideal, and
the effects of various kinds of structural or actuator nonlinearity are not known.
The presentation by Lyons and Aubrun of results from experiments on elementary
structures with a few sensor-actuator combinations showed some agreement between
analysis and test data. Although other experimental work is known to be under way,
a reasonable assessment is that several theoretical approaches exist in this area
with insufficient experience in their application to form a blending of these
methods which can be applied confidently in a practical situation. Only through
ground test and analysis programs involving relatively complex structures and
associated control systems and through careful space flight experiments will this
necessary confidence and experience be achieved. Such programs also will cause
appropriate organizational redlignments to enhance communications, as well as
appropriate merging of the structural dynamics and controls disciplines,

The trends in research in structural analysis and modeling are toward
increasing finesse to achieve efficiency. These trends are driven by two consider-
ations: (1) potential large space structures have too many elements to model with
the conventional finite element approach, and (2) small, accurate models are a
necessity for practical design procedures involving resizing and repeated analyses.
One trend is toward models in which structures with many repeating elements are
idealized as equivalent continua, followed by analyses that are a blend of clnssical
partial differential equation solutions and approximate techniques. Assumed-
function approaches that extend classical Ritz-type methods tc¢ nonlinear responses
of these idealized structures are being applied with success. None of these new
techniques, however, has been incorporated into generally available computer
analysis programs. In addition, experience with new structural concepts such as
cable-stiffened structures is sparse. With extended experience using large space
structure concepts and incorporation of new techniques into practical computer
analysis programs, structural analysis and modeling of most forseeable large space
structures will become feasible.

Ground tésting is perceived as a major:challenge in large space structures

" applications because of gravitational and atmospheric effects. To derive maximum
. benefit from ground tests, it is necessary to have flight data to substantiate

analytical corrections for suspension system, gravitational, and atmospheric effects.
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Controversy exists concerning the nature of such flight data. Research-oriented
engineers tend to favor basic, relatively inexpensive experiments with specific
objectives, whereas project and systems engineers opt for more complex specimens
with much greater potential for practical demonstration. As was revealed at the
workshop, ground test data from tests of large structures configured for space
applications are scarce, and no data exist for space tests. Such data are needed
to obtain confidence in the analyses necessary to justify commitment to real
applications.

The emphasis in thermal analysis 1s on obtaining greater analysis efficiency.
Very little is being done to verify amalytical approaches or to ascertain sensi-
tivities through correlation with tests. Novel approaches to problems such as
interelement radiation were revealed. These approaches involve consideration of th
probable importance of various geometric effects. Assumed-function approaches are
also being developed to enhance efficiency.

Examples of the application of structural optimization procedures in the
design of complex structures are rare. Subassemblies can be designed to static
load requirements, but the technology for design for dynamic loading 1s immature.
The problem is complex, and research has been under way for over a decade. Dis-
cussions at the workshop indicated that real applications will not occur until
mission requirements force such a formal approach to design. Large space structurt
applications seem to provide these requirements.
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INTRODUCTION

Needless to say, a critical and in-depth review of the state of the art in
modeling techniques and analysis methods for large space structures would require
much more space than can be allotted to this paper. Therefore, this paper focuses

.on certain aspects of the subject pertaining to the structures discipline. Other
disciplines such as thermal analysis and modeling and controls are not covered
in this paper.

Figure 1 shows examples of the five categories of large space structures sug-
gested for various applications (see, for example, Refs. 1, 2 and 3). They include

1) Booms and other one-dimensional configurations
2) Planar surfaces
3) Antennas and curved structures
4) Platforms
5) Space stations
Because of their low mass and high stiffness, repetitive lattice trusses have been

selected as the primary candidates (Refs. 4 and 5) for most of the large space

structures. This paper focuses on modeling techniques and analysis methods for
these structures.
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CURRENTLY USED APPROACEES FOR ANALYZING
REPETITIVE LATTICES

A review of the state of the art in the arnalysis, design, and construction of
lattice structures until 1976 is given in Refs. 6 and 7. The currently used ap-

proaches for analyzing large repetitive lattices can be grouped into four classes
as shown in Figure 2.

The first approach 1s the direct method wherein the structure is analyzed as a
system of discrete finite elements. It has the obvious drawback of being computa-
tionally expensive for large lattices. This is particularly true when a buckling,
vibration, or a nonlinear aralysis is required. To remedy this drawback, techniques
were developed for substantially reducing the number of degrees of freedom in the
buckling and nonlinear analyses (Refs. 8 and 9}.

The second approach is based on replacing the actual lattice by a substitute
continuum model (see, for example, Refs. 10 through 14). It has the limitations
that: a) the local deformation effects are typically not accounted for, and b) ordi-
nary (or classical) continuum is not suitable for lattices with rigid or flexible
joints. To overcome these drawbacks, continuum models have besn developed which
include the local deformation modes (Refs. 15, 16 and 17). For lattices with rigid
joints, micropolar continua have been developed (Refs. 18 through 21).

The third approach is the discrete field method which takes advantage of the
regularity of the lattice and is based on writing the equilibrium and compatibility
equations at a typical joint and then using the Taylor series expansion to replace
these equations by differential equations (see, for example, Refs. 22 and 23). This
approach works well for simple lattice configurations, but becomes quite involved for
lattices with complex geometry.

e ~ C

The fourth group of methods is called the periodic structure -approach.

This approach is based on either: a) the combined use of finite elements and transfer
matrix methods, which is efficient only for rotationally symmetric or simple
geometries (Ref. 24), or b) the exact representation of the stiffness of an individual
member from which the analysis of beam~like lattices with simply supported edges can
be performed (Refs. 25 and 26). The limitations of the periodic structure approach
can be removed by combining this approachk with the substitute continuum approach.

This paper will focus on the reduction methods and improved continuum models.
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CURRENTLY USED APPROACHES FOR ANALYZING LARGE REPETITIVE LATTICES

© EQUILIBRIUM AND COMPATIBILITY
EQUATIONS ARE WRITTEN AT

® DEVELOPMENT AND STLUTION

APPROACH DRAWBACKS POSSIBLE REMEDIAL ACTIONS
® DIRECT METHND ® COMPUIATIONALLY VERY ® USE OF REDUCTION METHODS
o STRUCTURE ANALYZED AS EXPENSIVE FOR LARGE  FOR BUCKLING AND NONLINEAR
A SYSTEM OF DISCRETE LATTICES - PROBLEMS .
FINITE ELEMENTS SRR
|® SUBSTITUTE CONTINUUM ® LOCAL DEFORMATION EFFECTS |® INCLUDE LOCAL DEFORMATION
APPROACH NOT ACCOUNTED FOR MODES IN THE DEVELOPMENT
le ORDINARY CONTINUUM NOT  |® USE MICROPOLAR CONTINUA
SUITABLE FOR LATTICES R
WITH RIGID JOINTS R e
l® DISCRETE FIELD METHOD

© SUBSTRUCTURING - COM-
BINED USE OF FINITE
ELEMENTS AND TRANSFER
MATRIX METHODS

® EXACT REPRESENTATION
OF STIFFNESS OF IN-
DIVIDUAL MEMBERS

A TYPICAL JOINT CAN BE SUBSTANTIAL FOR
COMPLEX LATTICE
ARE USED TO DEVELOP
DIFFERENTIAL EQUATIONS
|® PERIODIC STRUCTURE
APPROACH

® NOT EFFICIENT FOR COMPLI-
CATED CONFIGURATION
AND/OR FOR TRANSIENT
RESPONSE CALCULATIONS

{® LIMITED TO BEAMLIKE
LATTICES WITH SIMPLY
SUPPORTED ENDS OR RING
CONFIGURATION WITH RIGID
CENTRAL MAST

® COMBINE WITH SUBSTITUTE
CONTINUUM APPROACH

Figure 2
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OBJECTIVES AND SCOPE
The objectives of this paper are listed in Figure 3. They are:

1) To review recent progress in continuum modeling and reduction methods which
are applicable to large space structures

2) To identify some of the analysis and modeling needs for future large space
structures

This paper is divided into three parts. The first part deals with continuym
modeling. Both beam—1like and plate-like lattices are considered. Linear thermo-
elastic static response, free vibrations, and buckling problems are treated. The
lattices can have either pin or rigid joints. Continuum models have also been
developed for beam-like lattices with open thin-walled section longerons, but will
not be considered in this paper. The second part of the paper deals with reduction
methods as applied to bifurcation buckling, nonlinear static, and dynamic responses.

-The third part deals with analysis and modeling needs.

OBJECTIVES

® REVIEW RECENT PROGRESS IN CONTINUUM MODELING AND REDUCTION
METHODS WHICH ARE APPLICABLE TO LARGE SPACE STRUCTURES.

L IDE.NI’IFY ANALYSIS AND MODELING NEEDS.
Score .
CONTINUUM MODELING
@ BEAM-LIKE AND PLATE-LIKE LATTICES WITH DIFFERENT CONFIGURATIONS.

@ LINEAR THERMOELASTIC STATIC RESPONSE, FREE VIBRATIONS AND
BUCKLING PROBLEMS.

@ LATTICES WITH PIN AND RIGID JOINTS.
@ BEAM-LIKE LATTICES WITH OPEN THIN-WALLED SECTION LONGERONS.

REDUCTION METHODS

@ BIFURCATION BUCKLING, NONLINEAR STATIC AND DYNAMIC RESPONSES.

ANALYSIS AND MODELING NEEDS

® LOADS DETERMINATION
® MODELING AND NONCLASSICAL BEHAVIOR CHARACTERISTICS.
©® COMPUTATIONAL MODELS AND ALGORITHMS.




&1 _ - EFFECTIVE THERMOELASTIC CONTINUUM MODEL

The characteristics of an effective continuum model are outlined in Figure 4 for
a typical double-layered grid such as the one shown in the figure. It is a continuum
having the same amounts of strain and kinetic energies as the original lattice when
both are deformed identiczlly. The temperature distribution, loading, and boundary
conditions simulate those of the original double-layered lattice grid.

The original three-dimensional double-layered lattice is replaced by a two-

li dimensional continuum plate model. The last two characteristics are perhaps the most
. important in terms of new developments. These characteristics are

1) Local defermations are accounted for

2) Lattices with rigid joiucs are modeled by micropolar continua

)

© IS A CONTINUUM WHICH HAS SAME AMOUNT OF THERMOELASTIC STRAIN

ENERGY STORED IN iT AS ORIGINAL DOUBLE-LAYERED GRID WHEN BOTH
ARE DEFORMED IDENTICALLY.

® TEMPERATURE DISTRIBUTION AND BOUNDARY COND!TIONS OF CONTINUUM
SIMULATE THOSE OF DOUBLE-LAYERED LATTICE GRID

® THREE-DIMENSIONAL DOUBLE-LAYERED LATTICE IS REPLACED BY TWO-
DIMENSIONAL CONTINUUM PLATE MODEL.

® LOCAL DEFORMATIONS 'ACCOUNTED FOR
® ORDINARY CONTINUUM MODELS FOR LATTICES WITH PIN JOINTS AND

, MICROPOLAR CONTINUUM MODELS FOR LATTICES WITH RIGID JOINTS
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LOCAL DEFORMATIONS IN AXTALLY LOADED PLANAR TRUSS

The local deformation in an axially loaded planar truss is shown in Figure 5.
The actval deformation has the zig-zag pattern shown on the top sketch. On the
average, however, the chord members remain straight. The classical continuum averages
these deformations as shown in the bottom sketch thereby substantially overestimating
the axial stiffness. The continuum models developed in Refs. 15, 16 and 17 do account
for local deformations such as the one shown here.
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. ORDINARY VERSUS MICROPOLAR CONTINUA

A contrast betwéen the ordinary and micropolar continua is made in Figure 6.
For an axially loaded pin-jointed truss member the transverse motion is completely
characterized by the joint displacements. The member rotation Y is related to the
joint displacements wy and wy. Therefore, the appropriate continuum to use in
modeling pin-jointed trusses is the ordinary continuum for which the displaccment
§<eld completely characterizes the motfion of the structure.

On the other hand, for a rigid-jointed member, the transverse motion 1is charac-
terized by both the joint displacements wj, wi; as well as the joint rotations 0j, ej
which are independent of the displacements. '}herefore, the appropriate continuum to
use in modeling rigid-jointed flexural members is one whose motion is characterized
by both a displacement {ield and an independent notition f{iefd. The micropolar con-
tinuum is such a continuum (Ref. 27).

TRUSS MEMBER (PIN JOINTS) BEAM MEMBER (RIGID JOINTS)

L
e — ke L >
L - - —J —}'F—-'-——'———'-———'-—-;E}--
DEFORMATION | T E :’T I l
PATTERN w; W, ,

v = %— (w, - W)
ROTATIONS ¢ = T (wj -wi)
6., 9j (JOINT ROTATIONS )
ORDINARY MICROPOLAR
APPROPRIATE
CONTINUUM (DISPLACEMENT FIELD ONLY) (INDEPENDENT DISPLACEMENT

AND ROTATION FIELDS )

Figure 6




BEAM-LIKE LATTICES CONSIDERED IN PRESENT STUDY

Some typical configurations for the beam-like and plate-like lattice trusses are
The characteristics of the continuum models for these lattices

shown in Figure 7.
are given in Refs. 15 and 16.

®) RECTANGULAR CROSS SECTION

Figure 7
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FREE VIBRATIONS OF CANTILEVERED DOUBLE~LACED BEAM

Consider the free vibrations of the cantilevered beam-lile lattice with pin .
joints showm in Figure 8. The continuum model for this structure is a cantilever
beam. The stiffness and the mass characteristics of this beam are given in Ref. 15.
The accuracy of the lowest seven frequencies obtained by the continuum model is
shown in the figure for the two cases of five and twenty bays. The exact frequencies
were obtained by a direct finite element analysis of the actual structure. For five
bays the maximum error in the third bending frequency is 7 percent and reduces to
less than 2 percent for twenty bays. As to be expected, the accuracy of the predictions
of the continuum model increases with the increase in the number of bays.

n=>5 n=20
FIVE REPEATING ELEMENTS TWENTY REPEATING ELEMENTS
bi = ith BENDING MODE
ti = ith TORSIONAL MODE
110 ei=ith EXTENSIONAL MODE

3

1.05

exact
1.60

0.95

0.90

Figure 8
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FREE VIBRATIONS OF A SIMPLY SUPPORTED HEXAHEDRAL GRID

The second problem considered is that of the free vibration response of a double-
layered hexahedral lattice grid with pin joints shown in Figure 9. The continuum
model for this grid is taken to be a square plate whose stiffness and dynamic charac-
teristics are given in Ref. 15. .

In order to amplify the effect of local deformations, the areas of the core
members of the grid were assumed to be twenty times the areas of the core members.
The accuracy of the lowest six frequencies is shown in the figure. The solid lines
refer to the continuum which includes local deformations, and the hatched lines are
for the case when local deformations are neglected. The importance of including the
local deformation is obvious.
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pr I = INPLANE MODE
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SPATIAL VIERENDEEL GIRDER

This set of results includes the free vibrations and buckling of beam-like lattices
with rigid joints. As an axtreme case consider the spatial vierendeel girder shown in
The continuum model for this structure is a micropolar beam whose stiffness

Figure 10.
and dynamic characteristics are given in Ref. 21.

la 13 '3

Figure 10




FREE VIBRATIONS OF CANTILEVERED VIERENDEEL GIRDER

The accuracy of the lowest six vibration frequencies obtained by the micropolar
continuum models is shown in Figure 11. Two cases are considered, namely, five and
twenty bays. For the case of five bays, the maximum error in the third bending fre-
quency is less than 5 percent and for twenty bays the error is well within 0.1 percent

Accuracy of Micropolar Continuum Solution

n=5 n=20
Five repeating elements Twenty repealing elements

| § (1 P _

bl = ith bending mode

ti = ith torsional mode
L0 -

[
Yexact Lol B U 2 b
b2 t3
b3

.95 I -
e.%

Figure 11
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MODE SHAPES FOR CANTILEVERED VIERENDEEL GIRDER

The mode shapes assoclated with the lowest elght vibration frequencies for a
shown in Figure 12. The modes alterpate

ten~-bay cantilevered vierendeel girder are
between flexural and torsional as shown. The continuum predictions are given along

with the exact frequencies obtained by the direct finite element analysis of the
actual lattice structure (shown between parentheses).

w7 = 24029 Hz (24449 vg =34.304 Hx (34.302)*

. Figure 12
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BUCKLING OF CANTILEVERED VIERENDEEL GIRDER

The lowest two bifurcation buckling modes of a ten-bay cantilevered vierendeel
girder are shown in Figure 13. The predictions of the micropolar beam model are
given along with those obtained by direct finite element analysis of the actual
lattice (shown between parentheses).

Ten Repeating Elements

10-3 x X; = 1330 Newtons (1.330) 10-3 x X = 1807 Newtons (1.823)

Figure 13
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REDUCTION METHODS FOR BIFURCATION
BUCKLING AND NONLINEAR ANALYSIS

The second topic considered in this paper is the use of reduction methods: for
bifurcation buckling and nonlinear analysis. The basic features of reduction methods
are outlined in Figure l4. They are techniques for reducing the number of degrees of
freedom through the transformation shown. The vector {X} represents the original
displacement degrees of freedom. The vector {¢} refers to amplitudes of displacement
modes and [T'] is a transformation matrix whose columns represent a priorit chosen global
displacement modes.

As to be expected, the effectiveness of reduction methods depends to a great
extent on the proper selection of displacement modes. In a number of studies, it was
shown that an effective choice of the displacement modes includes the various order

derivatives of the displacement vector with respect to the load parameter (Refs. 8

and 9). These vectors are generated by using the finite element model of the oni-

ginal Lattice structure. The recursion formulas for evaluating the derivatives L——},
2 3

Pa—gl, X §}. ... are obtained by successive differentiation of the original finite

p 3p

element equations. The left-hand sides of the recursion formulas are the same (see

Ref. 8). Therefore, only one matrnix factorization is nequired fon the generation

of alf global functions. Several numerical experiments have demonstrated the

effectiveness of this choice (see Ref. 9).

DEFINITION ARE TECHNIQUES FOR REDUCING THE NUMBER OF D.0.F.
. THROUGH THE TRANSFORMATION

mn.l UL r.l r<<n

Xt

3

ORIGINAL DISPLACMENT D.O.F. IN THE FINITE
ELEMENT MODEL

MATRIX OF GLOBAL DISPLACEMENT MODES

Wi REDUCED D.O.F. - AMPLITUDES OF DISPLACEMENT
MODES

SELECTION OF GLOBAL DI SPLACEMENT MODES
(g [;__t ,a2xl !a3x ]

LOAD PARAMETER

rl

© COLUMNS OF ('] GENERATED BY USING THE FINITE ELEMENT MODEL OF THE
ORIGINAL STRUCTURE

©® THEIR GENERATION REQUIRES ONLY ONE MATRIX FACTORIZATION
o NUMER_ICAL EXPERIMENTS HAVE DEMONSTRATED THEIR EFFECTIVENESS
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BASIC EQUATIONS USED IN REDUCTION METHODS FOR BIFURCATION
BUCKLING AND STATIC NONLINEAR PROBLEMS

The basic equations used in reduction methods for bifurcation and static non-
linear problems are given in Figure 15. It is worth noting that the original
displacement unknowns {X} can be on the order of thousands whereas the reduced
unknowns {¢} are typically twenty or less. This is true regardless of the complexity
of the structure and/or the loading. The details of the computational procedure for
tracing the load-deflection paths in nonlinear static analysis, including identifi-
Application

cation of bifurcation and limit points, are given in Refs. 28 and 29.

of reduction methods to nonlinear dynamic problemes is discussed in Ref. 9.

ACTUAL (LARGE) PROBLEM

REDUCED (SMALL) PROBLEM

IX}= INDIVIDUAL =] 1Xi= [(F1tg! ]~ AMPLITUDES
F%’&"A‘@”JQL DISPLACEMENTS | OF DISPLACEMENT
MODES
® THOUSANDS OF UNKNOWNS| @ TWENTY OR LESS
BIFURCATION N - .~ 1 -
GOVERNING| BUCKLING [[K] + P[KG]]*X* =0 [[K] +p [Kg]] 1= 0
EQUATIONS [ <taTic 1 - - =
NONLINEAR IKNXE + 16 (X))} - piPt = O [KNgl + 1G (¢)i-piPl =0
- | RESPONSE | ~ 1000 EQUATIONS ~ 20 EQUATIONS

HOW TO TRACE LOAD-
DEFLECTION PATH

©® REPEATED SOLUTION OF
LARGE SYSTEMS OF
SIMULTANEOUS NONLINEAR
ALGEBRAIC EQUATIONS

©® GENERATION OF [T']

® MARCHING WITH SMALL
SYSTEM OF EQUATIONS

@ ERROR SENSING AND
CONTROL (UPDATING [I]
WHENEVER NEEDED)

(K) = (rTIKars

. 22
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. [Kg]=rriftkacrs

Figure 15
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APPLICATION OF RFDUCTION METHODS TO BIFURCATION
BUCKLING OF A LATTICE TRUSS

As a simple demonstration of the effectiveness of reduction methods to bifurcation
buckling problems, consider the thirty-bay cantilevered beam~like lattice truss with
pin joints subjected to axial loading. The truss has 372 displacement degrees of

" freedom. The convergence of the lowest two buckling loads with the increase in the
number of global functions or reduced degrees of freedom is shown in Figure 16. With
six global functions, i.e., a 6x6 eigenvalue problem, the results obtained by the
reducad system are identical to those obtained by the full system of equations to
four significant digits.

30-BAY CANTILEVERED BEAM-LIKE LATTICE TRUSS SUBJECTED TO AXIAL LOADING

NUMBER OF BUCKLING LQAD 03
BASIS Per X 1
VECTORS Dl Dz
3 1,328 328.24
y 1.251 2.191
5 1.258 2.506
6 1,258 2.505
X, Xy
(372 D.0.F.) T F7 N z
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Figure 16
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ANALYSIS AND MODELING NEEDS FOR LARGE SPACE STRUCTURES

The third part of the paper deals with the analysis and modeling needs of large
space structures. A list of some of the areas where more work is needed in the future
is given in Figure 17. The first area in which work is needed is the general deploy-
ment/erection analysis capability which includes the elements of both rigid body
kinematics and flexible body dynamics.

The second area is that of anmalysis and modeling of structurcs with very slender
members. This includes members with length to radius of gyration ratio of the order
of 1,000. It also includes tension-stiffened and tension-stabilized structures.

Congiderably more work is needed on sensitivity analysis, that is the sensitivity
of the response of the structure to the various items listed in Figure 17.

Then there is a need for a hybrid continuum/discrete modeling and analysis
capability for specialized problems such as stress concentrations.

Finally, accurate determination of thermal, dynamic, and control forces is needed.

© GENERAL DEPLOYMENT/ERECTION ANALYSIS CAPABILITY
©® COMBINED KINEMATIC-STRUCTURAL ANALYSIS (INCLUDING ROTATION,
NONLINEAR ‘AND DAMPING CHARACTERISTICS OF JOINTS, AND
FLEXIBILITY OF MEMBERS)

® DETERMINATION OF DEPLOYMENT LOADS (BOTH MECHANICAL AND
DYNAMIC)

© ANALYSIS AND MODELING OF LATTICE STRUCTURES WITH VERY SLENDER
MEMBERS AND CABLES

® DYNAMIC CHARACTERISTICS OF STRUCTURES WITH BUCKLED MEMBERS
® STUDY OF NONLINEAR (LARGE ROTATION) EFFECTS
® IMPERFECTION SENSITIVITY

® LEVEL OF MODELING REQUSRED (TENSION-STABILIZED STRUCTURES
AND WRINKLED MEMBRANES)

@ SENSITIVITY ANALYSIS - SENSITIVITY OF RESPONSE T0:
® SURFACE INACCURACIES fE.G.. CURVED SURFACE STRUCTURES)

® VARIATIONS IN DESIGN VARIABLES {REQUIRED FOR EVALUATION
OF STRUCTURAL CONCEPTS AND FOR OPTIMIZATION)

©® MODELING DETAILS
® JOINT REXIBILITIES AND DAMPING CHARACTERISTICS
@ FATLURE OF SOME MEMBERS (DAMAGE TOLERANCE)
® HYBRID CONTINUUM - DISCRETE MODELING AND ANALYSIS CAPABILITY
’ © DETERMINATION OF THERMAL, DYNAMIC LOADS AND CONTROL FORCES

& THERMAL LOADS INCLUDING COMFUTATION OF RADIATION VIEW-
FACTORS

" .® DYNAMIC LOADS DUE TO DOCKING, MANEUVERING AND ASSEMBLY _ Ce >

A_Figuré 17.
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- < FUTURE DIRECTIONS FOP. MODELING AND ANALYSIS
OF LARGE SPACE STRUCTURES

:' Afr .ar as futun;_ directions are concerned, the driving forces are the nee&s for
o evaluat on of structural concepts, aad accurate prediction of strength, stiffness, and
EH fatigue life of large space structures (Figure 18). There are numerous opportunities
i provided by new advances in computer hardware, firmware, software, CAD/CAM systems,
éﬁ ' computational algorithms and materials technology. .
4
q DRIVING FORCE .
: © ® EVALUATE STRUCTURAL CONCEPTS . <o oo o0 oo 4
5 ® PREDICT STRENGTH, STIFFNESS, FATIGUE LIFE AND o
X - DAMAGE TOLERANCE | -
£ e MODELING AND ANALYSIS OF LARGE STRUCTURES
i - SUBJECT TO HARSH ENVIRONMENT ;
T ® RELIABILITY AND ERROR ESTIMATES OF SOLUTION !
:3, °  OPPORTUNITIES - PROVIDED BY NEW A'DVANLSES IN: N
® COMPUTER HARDWARE AND FIRMWARE N\
® COMPUTER SOFTWARE AND CAD/CAM SYSTEMS L
‘ B
: ® COMPUTATIONAL ALGORITHMS .
® MATERIALS TECHNOLOGY }
.
|
_ __Figgre 18 % ]‘
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RECENT AND PROJECTED ADVANCES IN COMPUTER
HARDWARE AND SOFTWARE

Some of the recent advances in computer hardware and software are listed in
Figure 19, The new computing systems include the supercomputers such as the CRAY 1S
and the CDC CYBER 205. The opportunities provided by these large computers are
discussed in Ref. 30. There are minicomputers with the new array processors such as
the FPS-164 which has 64 bit-length word and a computational speed of the order of -
12 MFLOPS (millions of floating point operations per second). Microprocessors are
likely to impact large space structures. Then there are the new multiple CPU computers
like the APPOLLO computers which have several processors running in an asychronous
manner using the same data base.

As far as the user—interface type of hardware 1s concerned, it is worth mention-
ing the new verbal (audio) and visual interfaces.

Considerable progress has been made in the software area. Software progress
includes relational data bases, which can handle large volumes of data and which
are a product of the IPAD technology at NASA Langley (Ref. 31), and the new geometric
modeling and graphics systems (such as the AD-2000 and the ANVIL~4G00). Perhaps one
area which needs more attention 1s that of artificial intelligence and its exploitation

in the design of large space structures.

® NEW COMPUTING SYSTEMS

SUPERCOMPUTERS (E.G., CRAY, CYBER 205)
MINICOMPUTERS/ARRAY PROCESSORS (FPS-164)
MICROPROCESSORS

MULTIPLE CPU COMPUTERS (E.G., APPOLLO COMPUTER) -
SEVERAL PROCESSORS RUNNING IN AN ASYNCHRONOUS
MANNER USING THE SAME DATA BASE.

® HARDWARE - USER INTERFACE
e GRAPHIC DISPLAY '
e VERBAL (AUDIO) AND VISUAL INTERFACES

® SOFTWARE
® RELATIONAL DATA BASES (RIM - NASA LANGLEY)

® GEOMETRIC MODELING AND GRAPHICS SYSTEMS (E.G., AD-2000,
ANVIL 4000)

. ® ARTIFICIAL INTELLIGENCE

"_-Figure 19
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INTEGRATED ANALYSIS AND CAD SYSTEMS

The efficient design of large space structures requires a strong interaction
between a number of disciplines including structures, controls, and thermal analysis,
among others. In response to this need, integrated analysis and CAD systems have

been developed and are currently upgraded to perform this task. Three examples are
listed in Figure 20.

® INTEGRATED THERMAL-STRUCTURAL-CONTROL CAPABILITY
(BOEING - NASA GODDARD)

e COMPUTER-AIDED DESIGN SYSTEM
(GENERAL DYNAMICS, MARTIN MARIETTA - NASA LANGLEY)

® FUTURE DISTRIBUTFD/INTEGRATED ANALYSIS DESIGN SYSTEM
AT LANGLEY

Figure 20
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FUTURE DISTRIBUTED/INTEGRATED ANALYSIS DESIGH
SYSTEM AT LANCLEY

A schematic of a future distributed/integrated analysis design system at Langley
is shown in Figure "3. It has an executive and a number of functional modules each
representing one of the disciplines. These models interact through a common rela-
tional information manager (RIM). The planned system, which is already well under
development, would allow the different modules to be executed on different computers

(distributed computing). The computers may even be located at different geographic
locations.

EXECUTIVE

T -~~_ I

GEOMEIRIC | grpucTURAL THERMAL |
'(VEDD-%O%? TRUCTUR? e | | [controus | [orapics|  |oprimization

RELATIONAL
INFORMATION
NAGER
v P = PRE- AND
POST- PROCESSO
DEC |+{ CDC |—{PRIME OCESSOR

=" ree
1 11 ]
b L

® LANGLEY
® OTHER CENTERS

Figure 21




SUMMARY

In summary, three topics are covered in this paper, namely, recent advances in
continuum modeling, progress in reduction methods, and analysis and modeling needs
for lurge space structures (Figure 22).

As far as continuum modeling is concerned, an effective and verified analysis
capability exists for linear thermoelastic stress, birfurcation buckling, and free
vibration problems of repetitive lattices. However, application of continuum modeling
" to monlinear analysis needs more development.

‘Reduction methods have proven to be very effective for bifurcation buckling and
static (steady-state) nonlinear analysis. However, more work is needed to realize
their full potential for nonlinear dynamic and time-dependent problems.

As far as aualysis and modelihg needs are concerned, three areas have been
identified.

As to be expected, the modeling and analysis of large space structures will be

strongly impacted by new advances in computer hardware, software, integrated analysis,
CAD/CAM systems, and materials technology.

® CONTINUUM MODELING

e VERIFIED FOR LINEAR STRESS ANALYSIS, BIFURCATION BUCKLING,
AND FREE VIBRATION PROBLEMS OF REPETITIVE LATTICES

® NEEDS DEVELOPMENT FOR NONLINEAR ANALYSIS

@ REDUCTION METHODS

e VERIFIED FOR BIFURCATION BUCKLING AND STATIC NONLINEAR
PROBLEMS

® FURTHER DEVELOPMENTS NEEDED FOR NONLINEAR DYNAMIC PROBLEMS

® ANALYSIS AND MODELING NEEDS
® GENERAL DEPLOYMENT/ERECTION ANALYSIS
® LATTICE STRUCTURES WITH VERY SLENDER MEMBERS AND CABLES
® SENSITIVITY ANALYSIS

. ® IMPACT OF NEW ADVANCES IN COMPUTER HARDWARE, SOFTWARE AND
.~ MATERIALS TECHNOLOGY o ' e

Figure 22
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RECENT DEVELOPMENTS IN THERMAL ANALYSIS '
OF LARGE SPACE STRUCTURES

R. F. O0'Neill
General Dynamics Corporation
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San Diego, California



LATTICE-TYPE SPACE STRUCTURES CAN EXPERIENCE
. ACCUMULATED PENUMBRAL SHADOWING

Thermal ‘analysis of relatively sparse structures in the space environment has

customarily omitted consideration of shadowing by up-sun structural members. This

. convention has been frequently questioned in the case of lattice-type structures
supporting very large, near-planar, Earth-facing surfaces (e.g., antennas). For
these, significant shadowing can occur whenever the solar vector is nearly tangent to
the orbital path. It thus becomes advisable to quantify the shadowing effect, but
_sparse structures present an exceptional element of complexity. A typical sparse
structural assembly, a parabolic expandable truss antenna (PETA), is portrayed in
figure 1. 1In such assemblies, multiple up-sun (i.e., shadowing) members may yield
only partial shadowing of an elemental area of interest, with the degree and duration
of shadowing being a strong function of the size and density of the structural '
assembly.
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THE TRADITIONAL APPROACH: THERMAL MODELING OF THE ON~ORBIT ASSEMBLY RADIAL ARM

Space heating anmalysis procedures usually assume either total shadowing or total
solar irradiation of individual elemental areas of mapped surfaces. The Vector Sweep
program (ref. 1) typifies this approach. While the latter convention is reasonably
sound for structural assemblies of which most -or all geometric dimensions are of the
same order of magnitude, it is less realistic for sparse structures composed of slen-
der members having extremely high length-to-diameter (R/d) ratios. Traditional
methods were employed in modeling an on-orbit assembly (OOA) spacecraft structural
assembly, as described in reference 2. The analysis model is shown in figure 2. :
Following computation of radiation view factors for spatially oriented arrays of geo-
metric subelements, incident space-environment heat rates were computed for each sub-
element at successive points in time throughout the orbit. The heat rate histories
were then incorporated in a thermal model of the radial-arm subassembly, which yielded
temperature histories for the radial-arm structural elements. The thermal analyzer
model nodal arrangement was geometrically identical to the Vector Sweep program sub-
element arrangement permitting direct incorporation of the Veetor Sweep output heat
flux histories in the thermal analyzer model. Notwithstanding its level of detall,

the thermal model is seen to be limited in scope, in that it can address only a local
region of the total structural assembly.

e Numbers represent
thermal analyzer model nodes ss
{1 n 1 12 ] 13 (1a4) 1§ | L | 17 1

T54 [55] 4

Ll e 1 v T 20 (n) 2z J 23 ] 24 | )

Figure 2
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THERMAL lRESPONSE AS PREDICTED BY TRADITIONAL METi-lODS

On—-orbit assembly spacecraft radial-arm cross-member temperature histories
obtained in the study in reference 2 are shown in figure 3.
to make a qualitative comparison of figure 3 with temperature prediction data from
the space structure heating (SSQ) procedure,. to be presented later. It is seen
that only six shadowing members are implied in the figure 3 temperature histories.
Thus, accumulated shadowing by multiple, more distant members is not taken into
account. This is a commentary on the limited geometric scop.e of the model of
figure 2. Conversely, the total shadowing (rather than penumbral) inferred
during the six non-Earth-shadowed intervals is probably excessive.

' ,4éeenbdd)
200 =\ a0 [__10. . |
F F ﬂ a{l10 -
100
|
Temperature |
(deg F)
-100 '
Shadowed heat flux Earth
histories permit detailed shadow
passage

thermal response calculations
-~200 \

-300
20 22 V) 2 4 6 8 10 12 14 16 18

Time after noon position (hr)

Figure 3

It will be instructive '
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AN ALTERNATE APPROACH: THE SSQ PROCEDURE

It will be seen that typical space structural members can experiénce intervals of
solar shadowing that vary widely in terms of timing, duration and degree, even on a

_single member. The SSQ program, introduced in reference 3, avoids inordinate computa-

tional complexity by confining attention to a single elemental location on a struc-
tural member of interest throughout an entire orbital period, proceeding thence to
similar treatment of individual alternate locations. The procedure considers a space-
craft in circular orbit and assumes fixed-Earth orientatien of the spacecraft. As

shown in figure 4, its angular position 6 in orbit is weasured from an arbitrary

datum. Orbital-plane angle of inclination to the Sun vector S is defined as B. . Also
noted in figure 4 is a moving-spacecraft right-handed coordinate system, of which the
positive x-axis is in the direction of motion, and the positive z-axis contains the

center of the Earth.

CIRCULAR ORBIT,

x [(H+3440)3
36 62750

= 0
t = —_ P
60

w

H = ORBIT ALTITUDE, n.mi.

= ORBIT PERIOD, min

= SPACUECRAFT ANGULAR POSITION IN ORBIT
ORBITAL PLANE INCLINATION TO SUN VECTOR
= COSBSING,SIN 8, COSBCOSO

DT O W
[}

Figure 4
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SHADOWING-MEMBER IDENTIFICATION B

The SSQ program permits definition of numbered structural node locations in the i

. spacecraft coordinate system, followed by definition of line segments (structural 1

‘members) in terms of bounding node numbers. Slender structural members are assumed .

to be cylindrical, and are assigned values of diameter, thermal mass per unit of .

length, solar absorptance, emittance, and view factor to space. Partially or totally -

opaque bodies are also defined in terms of bounding line segments, and the latter .

surfaces are assigned transmissivities that may vary as functions of solar angle of

incidence. . . _ : /

Following selection of a structural element of interest i, all spacecraft coor- \/
dinate data are transformed (without rotation) to an i-centered coordinate system. '
The latter data thus define potential shadowing members j. As shown in figure 5,
the locus of the spacecraft-Sun vector progressing about element i through a complete /
orbit describes a cone with its apex at the i-centered system origin. Potential Ce .
shadowers are represented as line segments. Simultaneous solution of line and cone ‘v
equations yields sets of intercepts (x, y, z)j which are then examined for residence . \
between limiting values (x, Yy, :)1,j and (x, y, z)z,j. Qualifying sets define indi- |
vidual members that actually do shadow element of interest i, permitting definition \
of the orbital position 8 at which shadowing occurs. At this point, shadowing mem-— A
bers j are retained in a new k array, in order of increasing 6. \

(x.y.2)5; .
d . . y e SHADOWER j COORDINATES TRANSLATED TO
SHADOWING i =0,0,0SYSTEM

o = \/(;z-x|),2+(y3-y|)j3iu_.-z,if

x3"‘|) (Vz‘yo . -(‘:"l) °

a = b, = ¢, =f = .. .
] ( L i ] I. i ] 1 ) «\'---..k
e  SHADOWER: ("—"")j - (y—,%' ),— - (‘—:‘)l .

o S1ocus: x2+22-y2nlp = 0 /S

Figure 5
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- - - SHADOW ORIENTATION

It now becomes necessary to examine the orientation of shadows Bk as viewed
from the element of interest i. As seen in figure 6, shadows traversing the visible
.solar disc can be classified as being essentially horizontal or nonhorizontal. The
latter distinction becomes an important discriminator in computing individual shadow-
ing durations. The two shadow classifications are compared in figure 6, in which._
assumed values fc - the radius of and distance to the Sun are shown: 375,735 n.mi., and
80,884,432 n.mi., respectively. Of major significance, the end points of a so-called
horizontal shadow are assumed to enter and leave the visible solar disc, but it is
3 - assumed that the end points of .a nonhorizontal shadow are never visible.
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INCLINATION ANGLE ¢' DETERMINES SHADOW CLASSIFICATION

X
!

:i Development of the test for,classifying shadow orientation is shown in fig-_ E .
o re 7. Unit vector ﬁ normal to S and Ly is obtaiRed by normalizing the product Ly x :
3§ 5. Incidence angle ¢y is the angle described by ny and the projection-of Ly on a Tt
:& plane normal to 5. Angle ¢p is employed later in computing t?e durationAof non- .
-3 horizontal shadow intervals. The scalar projection of Ly on Ny is (L - n)g, and : i
- : (T - & tan ¢)g divided by (L - n)y is the slope of the Ly projection normal_to S. Aﬁ o\
- shown in figure 7, (L - A tan $)i divided by the absolute value of vector (7 + L - n) ) !
S ﬂ)k is the tangent of angle ¢f. This angle is an indicator_of horizontal versus non- R R
i horizontal shadow orientation; i.e., for ¢y = 2 tan-1 (Rg/|S|), member k would barely TA
N qualify as nonhorizontal (see figure 6). At this point, a reasonable assumption is s
e imposed to define a horizontal shadow in terms of Rs/[S], as shown in figure 7. '
BN : . ’ H
-
-'_.. \ .
E \
T /T, xs ] _ ) \
= P RMRc L lies along shadowin memBer *“‘\' n
= Pk = unitvector L to S and Ly RN
. . . - 3
e ﬁk = unit vector 1L to S and | to orbit plane ! .
= T-funey o =LMWmemﬁmﬁmmwmmms [
o oy 2 s Rs  >TAN ¢ for horizontal shadow
= - iy « @C- ANy, Isl ‘
7 1, k ) —q4.AN A
- X o >, Sn (cos~1 | L, *S]) it ¢, GE 89° .
- A <ntan — A ’
- ¢ "t lﬁl r(L-u“)nl'L 21 + (L ﬁ) njk ’_
- : |
&
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'SHADOWING INTERVAL DURATION

AL '.;.' R

‘ It now becomes necessary to compute the durations required for each shadow to Y
~ traverse the visible solar disc. Methods employed to compute shadowing interval dur- }’- ":-' a
o ations are illustrated in figure 8, 'in which the following terms are introduced: N
I . 2 J’
[y . can L
> 6y = Beginning of interval .
' 6g = End of interval 'i.
a H b
A8 = B - 6 | o 2y
. . : : RS Y
d = Shadowing member width ' o oo ‘ .

%2 = Distance to intercept at 0

Horizontal shadow maximum durations are evaluated in terms of the projection of an

' -extremely long shadower on a celestial unit sphere. Nonhorizontal shadow durations
are related to their inclination angles ¢ to the orbit plane, the lower limit being
twice the bracketed term (a verticle shadow). However, the value that 8 and O for

both horizontal and nonhorizontal shadows cannot exceed is always limited by the
shadower end coordinates.
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MERGED SHADOWS

At this point, the k array of shadowing members is ordered in terms of increasing
O0x. Many adjacent shadows (or portions of horizontal shadows) probably merge to form
a single larger shadow. These conditions must be redognized and adjusted. The method
employed for merged horizontal shadows is illustrated in figure 9. Merged nonhori-
zontal shadows are accommodated by similar procedures. The latter adjustments permit
creation of a new "m" array of discrete shadowers as would be viewed from the "i"
element-of-interest, and each shadower is defined in terms of an effective distance

%, an effective width d, and bounding angles Op and Og.

ay dyen oIF lsin"(lll'si“'l(‘v—llﬂj < ’i".'(?(;' k ' Si"-i(’_“—;')“n

LET a

;1 d
MAX OF (sm X+ sin 7] ki

LET b

MINOF (sin! X - sin! 4
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|_— ktn
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SIMUGLTANEOUS - NONMERGED SHADOWS

The SSQ program now creates & new m array of merged and nonmerged shadowing
members, ordered in terms of increasing 0pg. Overlapping ABp, intervals represent sub- .
A intervals in which more than one distinct shadow is contained within the visible solar
s disc. It is therefore necessary .to create an n array of subintervals of which 48, =

: "(BE - O0B)p, and in which the contributing members m are identified. A graphic repre-
sentation of this procadure is contained in figure 10.

L]
-]

Lexd
.
w]

20
T
X
D
m

X 1 i
e | O e : O
E } H T 1 ' n m SETS
5‘ i Lt o ! 0 SET | CONTAINED
i { f m+3| i
_ H '“== —
H H l § : : n m, m+t
J'B dl E : : = ntl m, m+l, m+2
L g' ! | | nt2 m+l, m+2
: 2 £ : l ; n+3 “m+l, m+2, m+3
ntl . | i
{ ég Og { | nt4 | me3
= |
| nt) . { 1
| n+3 I {
] 0y  Og
I__' 0
nt4

Figure 10

A

¢

u
o7 g
ey
38
&L -

" g

Y
.




INTEGRATION OF SHADOW PROJECTIONS ON THE SOLAR DISC

Penumbral solar heat flux is computed by integration of projected shadows m on
the visible solar disc, as portrayed in figure 11. A solar disc area reduction fac-

tor SHAD, is computed as shown in figure 11.

Horizontal shadows are currently assumed

to reside in the center of the solar disc (constant by). For nonhorizontal shadows,
SHAD, is computed at eight equally spaced & points within each A8 interval. Earth-
shadowing simulation is superimposed by additional solar flux attenuation during
penumbra passage (assumed linear with 8) and by total eclipse during umbra passage.
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N C COMPUTATION OF SHADOWED INCIDENT SOLAR fLUX o . '

If selected lines j are identified as bounding an opaque or semiopéque surface,
only two such lines can be intercepts. During the resulting interval Gj +n - 935,
solar flux is further attenuated by a constant or variable transmissivity T, or camn be.
X - eclipsed. Solar angle of incidence Y to a transmissive surface is computed as shown
K in figure 12, in which the two intercepted bounding lines are represented as vectors
Ly and ii + n» and a vector triple product is formed to compute the solar incidence
angle. 1so shown in figure 12 is the total solar flux incident to element i, but
ot ] attenuated by (1) the summation of SHAD terms, (2) the transmissivity of a semiopaque
;; o intervening surface, and (3) angle of incidence to structural element i, in which S
- . is the solar heat flux constant, an input termn.
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5 _ ' HEAT . FLUX SUMMATION AND RESULTING THERMAL RESPONSE

Incidei t Earth thermal and albedo radiation fluxes are computed in the SSQ pro-
AN gram, but shadowing of these diffuse fluxes is not considered. Earth thermal heat
= flux qp is calculated as shown in figure 13, in which p is the Earth albedo factor
- " (input), sad Fg is a geometric factor for thermal radiation to a cylinder. It is

= contained iun the program as tabular functions of altitude (an input term) and struc-
o . tural member angle of inclination to  an Earth radius vector. Earth albedo radiation
g qs is also computed as noted in figure 13, in which
= H = altitude’

R = Earth radius

cos 85 = cos B cos 6

Asrays of solar, Earth thermal, and Earth albedo heat flux incident to structural
member i are contained in printed output and are also available for graphic display.

.
“oe

Total absorbed heat flux can be employed in computing the thermal response of an
elemental length of structural zmember of interest i. A differential energy balance
is used, in which mc is the elemental thermal mass, t is time (a function of 8), q is
total absorbed heat flux, 0 is the Stefan-Boltzmann constant, Fg is the element view
factor for radiation to space, € is the emittance of the element, and o is its solar

aillnl ill ||'|_

p ot

= absorptance. The closed-form solution in temperature T is evaluated at successive
. points of time.
2.
f ¢ HEAT FLUX SUMMARY o STRUCTURAL ELEMENT THERMAL RESPONSE-
N - AT - : de
;g a = aqgtaqy teqg me i qd - al‘sdur“l‘4
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" §SQ PROGRAM OUTPUT OPTIONS INCLUDE
HEAT FLUX AND TEMPERATURE PLOTS

The SSQ program is coded ia FORTRAN V for the CDC CYBER 172 computer, and can be
operated in either the batch or interactive mode. The input format is orderly and
uncomplicated. Printed output can be limited to heat flux and temperature prediction
data or can include expanded data identifying shadowing members, merged shadowers,
and shadowing members (m array) contained in multiple shadowers (n array). DISSPLA
software is employed in the graphic output subroutine. Tektronix terminal visual and/
or hard copy and FR80 hard-copy output are available. Typical FR80 graphic output
features are shown in figure 14. SSQ program heat flux output can easily be formatted
as required for input to other thermal-analysis programs. Temperature output can also
be formatted to accommodate the input requirements of structural—analysis programs
such as LASS (ref. 4) or NASTRAN.
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- &5 o _ ' SELECTION OF GENERIC MEMBERS

It is possible to achieve substantial simplification of the SSQ shadowing-member—
identification routine, and we can greatly reduce the task of computing incident heat
flux histories. For example, shadowed heat flux incident to each of 978 members of a
. 12-bay PETA structure throughout a complete orbit can be constructed from results com-
i.{: . puted for only 108 members. As shown in figure 15, the PETA structure contains nine

" basic member orientations that recur throughout the entire assembly. It is shown in
figure 5 that the locus of the subvehicle vector about any point throughout a com-
plete orbit is a cone of half angle (n/2-B), of which f is the solar vector angle of
incidence to the orbital plane. An array of members spanning the entire spacecraft,
and inclined B degrees from the orbital plane, will contain 108 members, 12 each of
nine generic orientations. Analysis of the members in this array will permit compu-
tation of shadowed heat flux histories for all members in the entire spacecraft.
Exceptions will be shadowing effects caused by major external space hardware. As will
be seen, the latter effects can be computed separately and superimposed on selected
heat flux histories, where appropriate.

- ON Generic
. members

Figure 15




CONSTRUCTING A HEAT FLUX HISTORY DATA BASE

"Following identification of a 12-bay transverse array of 108 generic members in
the PETA structure (fig. 16) and their respective shadowing members, it is proposed
-to compute shadowed incident heat flux histories for five (tentatively) equally
spaced locations on each of nine generically oriented members (fig. 15) of the 12-bay
generic member array. This data will comprise a heat flux history data file in which
each heat flux history is identified in terms of (1) one of the nine basfc member
orientations, (2) one of the five equally spaced member locations, and (3) distance
from the spacecraft leading and trailing edges. The data file will permit construc-
tion of heat flux histories for any or all structural members on the spacecraft, as
illustrated in figure 16. Consider a member residing at dj, equidistant from the
leading and trailing edges, as shown in figure 16(b). Incident heat flux to all
points on this member will have been already assembled in the data file for the entire
orbit (0 < 6 < 2u). But figure 16(c) portrays a member location, d; from the leading
edge and d3 from the trailing edge. Incident heat flux to points on this member will
be contained in the d2 record for the orbit interval (0 < © < 7), and in the dj
record for the orbit interval (m < 0 < 2n). Heat flux histories for all members can
thus be constructed rapidly, especially since many members will reside at identical
locations with respect to the leading and trailing edges of the spacecraft. In the
absence of additional major shadowing, such members will have identical heat flux
(and temperature) histories.

12 SAVS x 9 GENEMC
MEMBER DRENTATIONS

ey 0s0cx)

dg. v <@ <2x) Q3. 5s0<2x)

Figure 16
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MAJOR BODY SHADOWING

5 _ Heat flux attenuation by major shadowing space hardware, if any, must be taken

h 3 into account before member thermal response can be computed.. Shadows cast by these
external bodies will traverse the spacecraft surface, and the shadow path is parallel
to the orbital plane only if B is zero. It will be necessary. to identify all struc- .
tural members any part of which resides within the limits of a shadow path. Major
shadowing computations can thus be limited to the latter members. A typical shadow-
ing situation is portrayed in figure 17. Of the shadowing-body coordinate data, the
maximum and minimum y valves correspond to points 2 and 3, respectively. At least
one end of potentially shadowed members must have a y coordinate no greater than yj.
For members meeting the latter test, let point 1 be either end of the structural
member, and : :

.YZ - Y1
J(xz -x2 + (yp - y2 + (22 - )2

B'mx - sin"l

y3-"1

J(X3 - xl)z + (y3

- B'min = sin~1

Yl)z + (23 - 21)2

= If B'pax > B > B'min for either end of the member, shadowing of a member will occur.
- Also, if both B' > B on one end of the member while both B' < B on the other end,
shadowing will exist. Shadowing intervals for all shadowed points can be computed
by the methods of figure 8. Major body shadowing effects must now be superimposed
on the heat flux data records of figure 16.

>T:*Figure 17
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LIMITING THE SCOPE OF TEMPERATURE COMPUTATIONS

Judicious selection of an.orbit for which B is zero (e.g., an equatorial orbit,
21 March or 2] September) and a preferred PETA attitude can permit temperature com-
putation for all members of a 12-bay PETA structure in terms of only 163 members
(plus members subject to major body shadowing). Effects of the choice of PETA atti-
tude and B on the task of computing member temperatures are illustrated in figure 18.-
Dark-shadowed regions of the PETA profiles represent areas in which the temperature
histories of all rmembers can be generated by computing the temperatures of a single
transverse array of generic members. Light-shaded areas are those in which each
member has one, and only one, thermally identical member in the opposite light-shaded ~
area. Thus, the PETA orientation of figure 18a (8 = 0) would require temperature
: history computation for exactly hz}f of the total number of PETA members. The same
;. PETA orientation with 8 # 0, shown in figure 18b, would yield a limited central region
" in which all temperature histories are represented in a single transverse generic-
. member array, but the above-noted light-shaded temperature correspondence is limited
to members situated on the vertical counterline. All members in the unshaded regions
N of figure 18c would require individual temperature computation. The PETA orientation
-3 of figure 18d (B = 0) -felds a large central region in which all member temperature
histories occur in a si.'gle transverse generic-member array. The latter advantage is
largely repeated in the orientation of figure 18e (8 # 0). However, the lower light-
shaded region members of figure 18e will each be thermally identical to those of the
upper light-shaded region. Temperature histories need only be computed for structural
members in the shaded region of figure 18e, which will include an array of generic

g L IR s Bl i
R St venperp Y S TR e I - :

R TR L S TR TLLERLN

members at the top of the region. Thus, 163 members can thermally model all 978 mem-
bers in the 12-bay PETA structure. Added to this, as noted earlier, are the
members that must be subjected to major body shadowing.
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i ssq IS FAST AND EFFICIENT 7
o : Assuming a 12 bay PETA analysis application, it is feasible to create one or ;

o more data files containing temperature histories for multiple points on each member I

- of the entire PETA structure, although the individual members will far outnumber the }:

= tcuperature histories. The latter records would be -indexed in terms of (1) types of ﬁ: /
- generic members (figure 19), (2) location on the member, and (3) distances from the o~
v spacecraft leading and trailing edges. Additionally, specific temperature records ] /jl
; might be identified solely in terms of specific elements of the structure. It would - :
i then be possible to create a detailed and accurate transient temperature profile of 0

- the entire structure by simply constructing a directory assigning identification of f

. - specific heat flux and temperature records to each member of the structure. To this’ Q

o point, a CYBER 720 CP time expenditure of only 3,380 seconds is estimated for the i

| entire structure, exclusive of plotting. This data base can be employed as the basis -

L for developing rapid-estimation thermal-analysis algorithms, possibly amenable to 5

o interactive execution. A

‘:_ L - : . o ;'l \'

?i; Ee T e :_3 R

4 o . |

* e Analysis of a 6-bay, 240-member PETA required only gx

b 4.14 CP seconds per elemental point (CYBER 720) i )
B : O .
- .. i /
: e 108 generic members can model incident heat flux i/
- histories, & 163 members can model temperature £

x histories for an entire 12-bay, 978-member PETA "

¥ . structure. Estimated CYBER 720 CP time is 3,600 seconds

o e Major body shadowing effects require added computation

e QGraphic output requires added expenditure _ =

[
297
-

Figure 19
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N nzvtnopmc A RAPID-ESTIMATION ALGORITHY .
It is anticipated ‘that examination of the t-ermal-response data base will

reveal the existence of large groups of structural members that experience
similar temperature histories. This would permit the analyst to assign the latter

" members to analogous modules for purposes of subsequent simpliiied analyses. Thus,

thermal analysis of a single member might reasonably yield the thermal response of
all members of the module subset. Members subjected to major body shadowing will
experience incident heat flux histories differing markedly from those of the 108
generic heat flux schedules of tle 12-bay PETA structuré, necessita.ing separate
identification and analytical tresatment of these members. Therefore, it is probable
that the location of analogous modules would be much affected by the location of
major shadows. Moreover, variations iu the latter conditions might be expected from
mission to mission, or at different tfmes in a single mission. Examples of these
conditions might include the arrival of an upper-stage propulsion system, or the con-
tinuing reorientation of large solar panels. Thus, if we are working with a specific

‘algorithm, and later elect to relocate a large shadowing solar panel, we would prob-

ably wish to redesign the thermal-analysis algorithm. Application-peculiar shadowing
effects therefore suggest the possible desirability of partial or total batch execu-
tion of a baseline thermal analysis as a necessary prerequisite for redesigning ther-
mal-analyses algorithms. A -risual search of the graphic data for general temperature
excursion trends may not be the only means of deducing simplified thermal-analysis
algorithms., It would be relatively simple to record such statistical data as extreme
values, mean values, frequencies, and ranges. Whatever the nature of the simplified
algorithm, the first step in its development must be execution of the baseline SSQ
code. (See fig. 20.)

¢ |dentify generic structural memberé
® Create an incident heat flux déta base
® Superimpose major body shadcwing effects
¢ Create a temperature history data base
e Create simplified thermal analysis algorithms
— Examine the temperature data base
Identify key members

— ldentify statistical data & trends

Figure 20
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LSS CONTROL OBJECTIVES

The principal cbjectives for LSS control are listed below. The general
objectives range from basic deployment and maneuvering, where some vibration modes
may be suppressed, to disturbance rejection for very high performance imaging
applications. The controls selected generally must produce some combination of
eigenvalue/eigenvector and loads modification in order to achieve the mission
objectives.

GENERAL
® Deployment management and maneuvering
® Pointing, stabilization, dimensional control
® Wave front error management (static and dynamic)

® Disturbance rejection

SPECIE’I(F
[ ) Stit:fness (natural f.requency) mocdificao.tion )
® Damping augmentatién
© Eigenvector modification
® Disturbance load modification

-~ Maneuvering

~ Steady state




least the four areas shown below.

The requirements for integrated s
sensors/actuators, and architectures,
systems planners.
goals without such an approach.

STATE-OF-THE-ART ASSESSMENT AND PROBLEMS

The ultimate mechanization for LSS controls depends on development within at

Large high-

The principal difficulties now appear to be a lack
of funded experimental efforts and inadequate signal processing and actuation hardware.
pacecraft control, including structures,. algorithms,
are still not generally acknowledged by the
performance vehicles cannot meet mission performance

1 L)
STUDY AREA | ACHIEVEMENTS I CURRENT PROBLEMS -
. [} |
l. Deployment and maneuvering 1 ~ Maneuvering algorithms and \ Control requirements and demon-
control analysis demongtrations strations for controlled deploy-
] l ment largely ignored
1 Multibody software i
| - Deplo,ment ground tests ]
i T
2. Synthesis/analysis tools s Bagic SAS well understood t- Interface to structural dynamics
and methods for robust
control designs | - Robust centrol design methods | = CAD software for rapid design
- 1 developed (stability) 1
~ Robust high performance (low
{ - Experimental veriffication I sensitivity)
LI 1 _ T
13, 1ldentification/adaptive |- Algorithms well developed e~ Few experimental tests
methods for high
performance } - Self-tuning methods applied | - Dependence on FFT metho.s
: i to some S/ & helicopter i
systems = Adaptive methods largely
| | untested
{ l— Real-time mechanizations
{ |  difficult
t ——
4. System architectures/ |- A/P systems demonstrated 1~ No integrated control philosophy
mechanizations ) closed-loop (200 Hz) . for spuce structures
1" High throughput multiprocessor/ - Experimental tests still uaplanned
parallel processor architectures
| 1in development 1 -~ Existing A/P architectures
i 1 inadequate
- Hardware tests in progress
i | - Inadequate actuator research
5 - |




- PLATE EXPERIMENT: GENERAL SCHEMATIC
This picture describes the circular plate suspension and the actuator/sensor
devices attached to it. The “trapeze" type suspension allows quasi-free motions
of the plate in 3511 directions, minimizing the interaction with flexible modes.
The spring and mass system provides isolation against vibrations coming through

the mounting bracket. This bracket is attached to a frame bolted on the l4-foot
optics table.

MOUNTING
BRACKET

T~ STRINGS

DECOUPLING
SPRINCS

CONTACTLESS
ACTUATOR

FLAT MIRROR

SPRINGS (A) -

I

SUSPENSION
ROD

NYLON
STRING

DETAIL(A)

PPM ACTUATORS (FRONT SIDE OF PLATE])
AND ACCELEROMETERS (BACK SIDE)
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X : : . ANGULAR OPTICAL SENSING SYSTEM

This chart shows how the local rotation of the plate is measuted at the mirror
locations. The. laser beams (obtained by splitting a single input beam) are
reflected by the mirrors and fall upon the 2-axis linear detectors. The (x', y')
positions of the spots produce pairs of proportional signals. The x' deflection
showed on the chart corresponds to a rotation of the mirror about the x' axis of

the plate, and the position y' corresponds in the same way to a rotation about the y'
. axis.

oPTICS TAULI;\

PHOTO X : ]
DETECTOR BEAM LASER
) Y* SPLITTER
§ =
~\:\
\J ADJUSTABLE )"

MIRRORS

SMALL
MIRRORS
x PLATE \,
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- ' "~ PLATE EXPERIMENT SENSORS AND ACTUATORS

" " This chart depicts the nature and location of the actuators and sensors used
o on the circular plate experiment. The actuators are of two types:

1. Contactless Actuators - Magnetic forces are exerted on a smidll magnet
attached to the plate. This provides the necessary actuation for
absolute pointing. '

2. Pivoted Proof-Mass Actuators (PPM) - Reaction forces are exerted by
. moving a small mass connected to the plate by an electrodynamic motor.
: e ~ Only AC forces can be produced this way.

. Sensors are of the angular type (deflection of a light beam by a small mirror
- is senged by a linear photo detector) or of the linear displacement type (measured
- via phase difference of the return light from a corner mirror using microphase
detectors). In addition, accelerometers are used to measure vibrations along
" e the Z axis.

- A m

A ®.® : INERTIAL SENSING/

: ACCELEROMETERS

(1 D.0O.F. Z-MEASUREMENT)

®.®  OPTICAL SENSING/MIRRORS
' .F. 6_., 0,,, ANGULAR
© " (2D.0.F. 0,0
® MEASUREMENT

(x°, y*) ARE 45° W.R.T,

(x, ¥)

g @-@: MICROPHASE OPTICAL SENSOR
- O (Z DISPLACEMENT)
: . ACTUATORS ,
$ - Aj. A, PIVOTED PROOF-MASS i
-- Ef?? Ay, A Ag : - CONTACTLESS ACTUATORS :
¥ (5 MAY BE USED TO SIMULATE DISTURBANCES) ~ad
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:OVERALL.SYSTEM CONFIGURATION

P

This chart shows the interaction and interfaces between the various processors
and the test structure. Control gains generated by control synthesis programs on
the UNIVAC 11-10 are transmitted directly to the STI/DEC 11-23 microprocessor system
and stored on disk. These gains can then be loaded, when needed, in the Array
Processor (AP) before starting control experiments. The AP has its own A/Ds and
DACs and thus carries out the control of the specimen independently of the rest
of the system. It can however be directed by the 11-23 to either start or stop
controlling, or to acquire a time-slice of data for later examination by the
11-23 software. Also, the 11-23 can concurrently run dynamic characterizations
of the specimen (either open- or closed-loop) since it can acquire sensor data and :
send excitation signals via its own A/Ds and DACs. ;
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“CONTROL EXPERIMENT PROCEDURE

-This chart is a flowchart showing the various operations-involved in the

" structural control experiments. From the finite element analysis, a linear model

is derived which 1s used as a basis for control synthesis programs. These programs
generate a set of gain matrices which are stored in the 11-23 and may be manually
updated if needed. The appropriate set is loaded in the array processor. Then

the control algorithm is started and the AP controls the specimen and may acquire
data, This data is stored on disk and can be analyzed off-line by the 11-23 or
transmitted to a larger computer (VAX, UNIVAC 11-10) for further processing. Also,

- while the AP is running, dynamic characterization may be carried out by the 11-23.

(UNIVAC 11-10)

REDESIGN ~ [CONTROL SYNTHESIS]  UPDATE
""" 1 (uNivac 11-10) T

' uanuar.
'UPDATE L B STORE @
" lestr 11-23:)

OFF-LINE @ o/t & C/L
ANALYSIS CHARACTERI ZATIOH
ST1 11-23 LoAD IN STI 11-23

VAX, UNIVAC
] CONTRgLLER

CONTROLLER
& FILTER
RESULTS

/

RUN CONTROL
TIME ALGORITHM - SPECIMEN
HISTORIES (MAP_300)
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CIRCULAR PLATE RESPONSE TQ STEP TORQUE

This chart shows the angular rotations of the plate about its x' and y' axes
vwhen a step torque is applied about the x' axis., The controller is digital as
described in the previous chart. The integral part of the controller makes the
angle return to zero, exactly cancelling the disturbance (DC) torque. The next
chart shows the steady-state pointing error. The rms value is about 5 urad.
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CIRCULAR PLATE: CLOSED;LOOP TEST (HAC 3RB)
- MEASURED AND ESTIMATED OPTICAL SENSOR OUTPUT

This chart shows comparisons between estimated and measured sensor. signals.
The sensor estimates are obtained by reconstruction from the state estimates.
Errors in the translational mode estimate are more obvious in the velocity
. comparisons. . : ' '
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CIRCULAR PLATE: CLOSED-LOOP TEST (3RB, 2F)

In this chart, a direct comparison between closed-loop and open-loop responses

is made showing the faster decay introduced by the control system.

steady~state amplitude has been reduced by a factor of 2.
two flexible modes and uses:the two top actuators only.

0.C2E N

EXCITATION INPUT (Actuator ¢5)

1860 um/s

I

OPEN LOOP

———t
L=
-
-3
]
-]

VELOCITY SENSOR #1 QUTFUT

1083 um-s

CLOSED L20P

TIHE (30

Also the
The controller controls
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measurement is contaminated by noise.
developed to minimize the bias in estimates.
the instrumentai-variables method does not require solution to a nonlinear

programming problem. The instrumental-variable estimates are, therefore, obtained

estimates at each data point.

- INVESTIGATIVE TECHNIQUES

The least-squares metho& gives bilased estimates of parameters when the input
The instrumental-variables technique was
In addition, unlike least squares,

The recursive prediction error methods based on discrete ARMA models update

The algorithms include recursive maximum likelihood,
recursive least squares, recursive instrumental variables, and extended Kalman filter
(corrected). These have been used successfully in signal processing and process

. .control and nonitoring applications. e
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. 4.36E-01

. OPEN-LOOP INPUT AND SPECTRUM FOR PLATE IDENTIFICATION

The plate open- and closed-loo
- .8square wave driving a CEM actuator.
excitation energy desirable for syst
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- . VELOCITY FFT COMPARISON (CH. 1)
- Open- and closed-loop FFT's of the velocity measurements show damping for the x5
closed loop. The attitude controller destabilizes this plant. Signal-to-noise, 8
however, makes damping ratio evaluation from the FFT difficult. o
gg .; !

XIETR 91 TR
-’

Closed Loop

2. 00E+e0 —

PO INSIN] WY PP LICIRI Po] QRSP

b &

- A

o~

2

.
N
[
l"
\
<

T
4.01E4G2 6.91E42 B8.Q1E+02
Freq, Hz

1.02E+090 2.91E+a2

NI R (I

4yt
ete N

:—‘lm'.'.‘.'-‘.'.'-'-'n ] W

“ o
..

[RCIUT YOI
o
®

Tt S ettt aTe em e e e e 4T et et e ek s et ult e e Clm s tel sal nt e e e e w  m e s aem e e




R L T o I R

- '. -~ iR . .,.
Svmpaaaru AR .

’f”OPEN;LOQP ZOTH-ORDER ID (POLES ONLY)

AT PEL e RRCRUSLRCASY
WM Y

AN

Open-loop transfer function reconstruction, after model identification, is
shown below. The effect of the zeros is quite pronounced.
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CLOSED-LOOP-DAMPING RATIO VERSUS MODAL FREQUfNCY~

_ H-;e,-damﬁing r#fio is plotted vérsus'modal frequency for some of the higher
- frequency modes. Variaticns from about 30 percent to nearly undamped are observed.
4Ail modeled modes and damping ratios are shown.
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AN L ' - COMPARISON OF DAMPING RATIO VERSUS MODEL ORDER

Damping ratio comparisons shown here clearly indicate the reduced damping
induced by the attitude controller.
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Open-Loop . Open-Loop
16th-Order Model 20th-Order Model

\e Frequency (Ez) Damping Frequency (Hz) Dampiug
17.26 0.0228 17.41 0.0224
51,27 0.0072 51.1 0.0092
25.83 0.0174 25.8 0.0333
31.8
41.5

® Damping ratio est.imates sensitive to model order for high Q modes

. ©°
) ¢ ¢

Closed-Loop
20th~-Order Model

ARl

£
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‘\\ o 3 Frequency (Hz) Damping

3 7

"' ‘\_. %

; 17.17 0.0078

50.45 0.0092

25,21 0.0267
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STRUCTURAL MODELLING AND CONTROL DESIGN UNDER INCOMPLETE
PARAMCTER INFORMATION:

THE MAXIMUM-ENTROPY APPROACH

D. C. Hyland
MIT Lincoln Laboratory
o Lexington, Massachusetts
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" LSS CONTROL METHODOLOGY REQUIREMENTS

Figure 1 indicates the overall objectives of the work considered here. Besides
the obvious basic requirement for a LSS control design methodology, -there are several
additional requirements needed to avoid excessive development cost and possible design
impasses. Actually, these additional requirements are not demanded merely from a ’
desire for mathematical elegance but are often essential for the attainment of the

basic objective. Ideally, as the right of the figure indicates, we should like to

devise a rigorous, one-step design procedure which.renders inadvertent design of non-
robust controllers unlikely or impossible and directly addresses the effects of model-
ling uncertainty in. large-order systems. The present paper concerns a new modelling
approach which succeeds in attaining many of these desirable features. Put most
briefly, our approach proceeds by adhering to the following two ground rules:

1. Incorporate parameter uncertainties directly into the design model (via
minimum data/maximum entropy models).

2. With a high-order stochastic design model, design implementable
(fixed-order) compensation which is optimal "on the average.” (Our
work has concentrated on meau-square optimization because of its
simplicity and relative familiarity).

AVOIDANCE OF DESIGN IMPASSE

® AD HOC. CUT-AND-TRY PROCEDURES MINIMIZED OR
ELIMINATED (Rigurous. One-Step Design
Procedure)

BASIC REQUIREMENT ° ® GUARANTEF ELEMENTARY SYSTEM PROPERTIES

ACCEPTABLE PERFORMANCE L’L‘:’F“;‘R;'::"_';’ D‘EGV;';:?\;’L:E“'m‘S

AT REASONABLE ACTUATION v R

LEVELS {Inadvertent Design Of Unstable Controller
Rendered Unlikely Or tmpossible)

® APPLICABLE TO LARGE ORDER SYSTEMS WITH
MODELLING INACCURACIES
(Direct Design Under Imperfect System
Information)

Figure 1
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CDNSEQUENCES OF THE CONVENTIONAL HODELLING PHILOSOPHY

The underlying motivation and ultimate ramifications of the above ideas can be
explained by contrasting current deaign sttategies with the present approach (Figs.

T 2,3).

Most schemes so far proposed invoke (at least implicitly) the existence of a
very high order and allegedly accurate design model which presumes complete informa-
tion on the values of all structural parameters. As Fig. 2 indicates, this initial

‘modelling step engenders a number of seemingly impenetrable obstacles.’ The first and

most serious obstacle, "large dimension", 1s connected with the difficulties imposed
upon optimization computations by the large dimension of the plant model. There are
basically two ways to circumvent this obstacle. The left-hand path shown in Fig. 2
proceeds by limiting the amount of system information retained in the model, i.e., by
model simplification employing any one of a number of techniques. Following this
model reduction step, an "optimal" control design can be computed by means of a suit-
able LQG-based algorithm. At this point one has a design but no assurance (arising
from the underlying mathematics of the design formulation) of stability and/or robust
performance in the face of inevitable spillover effects and parameter errors. Thus,
it is usually necessavy to "hedge" about a nominal LQG-based design in order.to re-
cover essential systean properties - and this involves lengthy and complicated design
iterations.

Another approach tu the treatment of the dimensionality problem is suggested by
the right-hand path in Fig. 2. Here, one seeks to limit the system information incor-
porated in the control by designing a "“simple" control of inherently energy-dissipa-
tive form. This manages to t:ndle the problems of spillover and other forms of model-
ling error but is limited to relatively low performance. The reason is to be found in
the inescapable trade-off between robustness and performance; one can be "safe"
everywhere in parameter space but cannot simultaneously achieve excellent performance

for any particular parameter values.

- Thus, there fs difficulty in securing a control which is both robust and optimal
(in some well-defined sense). Moreover, since the two generic design approaches
described here do not rigorously guarantee desirable properties, much checking and
design iteration is required. Finally, each attempt to circumvent a particular
obstacle seems to lead to further difficulties (for example the problem of large
dimensionality appears to necessitate modal truncation, but this step, in turmn, raises
the spucter of spillover instabilities, etc.).

The absence of theoretical simplicity and the plethora of ad hoc design steps
generally indicate that something is wrong - some fundamental element of realism has
been ignored. The view advanced here is that what is at fault is not to be found in
the detailed design strategies of Fig. 2 (since these are logically driven by the
initial premise) but rather arises from the presumption of a completely accurate,
deterministic structural model. Actually, due to numerous sources of modelling error,
and in advance of extensive testing and identification, there exists considerable
a priori uncertainty in the structural parameters. Moreover, one typically has very
little data with regard to the deviations of parameters from their nominal values.
Thus, if one rules out the possibility of (off-line) identification of all parameters
of a very large order system and attempts to devise a control which satisfactorily
handles most parameter uncertainties at their a priori levels, then realism demands
that such a control design be predicated upon a stochastic model which incorporates
the kind of extremely limited statistical information actually available.




Such a stochastic structural model is one major development of the work reviewed
herein. In contrast to the customary deterministic model, the minimum data/maximum
entropy model directly incorporates the least possiblce (in the sense to be described
later) a priori parameter information. The approach taken here is to adopt this
model as the basic design model (thus incorporating the effects of parameter uncer-
tainty at a fundamental level) and design mean-square optimal controls (that is,
choose the control law to minimize the average of a quadratic performance index over

the paraueter ensemble).

DETERMINISTIC STRUCTURAL MODEL

{Pr Complete information)
LIMIT INFO. LIMIT INTO.
RETAINED IN INCORPORAYED
MODEL BY CONTROLLER
LARGE ﬂ DIMENSION
SIMPLIFICATION
MODEL SIMPLIFICATION

* TRUNCATION (Aggregation)
* DECOMPOSITION ({Perturbation)

etc

e

. "OPTIPMAL" DESIGN FOR REDUCED
X MODEL

POSITIVE REAL DESIGN,
AND/OR RATE-OUTPUT

PERFORMANCE REQUIREMENTS
{The Need For Optimality)

- FEEDBACK
N
e
¥
- f SPILLOVER INSTABILITIES
o AND SIMILAR DIFFICULTIES
¥
k- MODELLING UNCERTAINTIES
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RAMIFICATIONS OF MAXIMUM-ENTROPY MODELLING

Figure 3 sketches the major consequences of this approach when applied to the
typical case in which all but a modest number of system states are associated with.
high levels of parameter uncertainty. First, the maximum entropy modelling philoso-
phy throws new light on the dimensionality problem. Although the number of
"poorly known" states may be very large, their statistical response is extremely
simple and, in particular, the second-moment response of such states may often be
computed from closed-form expressions. In other words, the process of averaging over
the parameter ensemble automatically induces a kind of "stochastic simplification".
Since we consider averaged quadratic functionals as performance measures, this feature
extends also to the optimization problem (as will be illustrated below). Thus, the
control corresponding to the noorly known portion of the system can be determined in
advance of burdensome computations and a mean-square optimal design is possible for
very large order systems.

We note that use of the maximum entropy model as the design model gives rise to
new forms of optimality conditions, representing generalizations of the familiar
Riccati equations of LQG. In formulating the optimality conditions for implementable
compensation, we have proceeded by climbing a ladder; each successive rung is a
controller form of increasing complexity and realism.

Even with implementation constraints imposed, the present approach has the poten-
tial to treat very high order system models. Thus, since spillover effects ultimately
arise from model truncation and the consequently artificial division of the full~order
system, "spillover" becomes a phantom within the present context.

Finally, the essential design model is as unpresumptive of prior information as
possible and thus envelops the actual parameter statistics in that it is "maximally
chaotic". Moreover, the optimization formulation implicitly imposes robustness con-
straints, as will be illustrated shortly. Thus, by virtue of the intrinsic mathe-
matical properties of the original design model, it is possible to secure an optimal
and robust design with little or no design iterafion.

°

DESIGN MODEL INCORPORATES

0 .

o | MviMuM DATA. MAXIMUM ENTROPY eSO oDty tnconPORAT
STOCHASIIC MODEL INFORMATION

l —e—— KESPONSE OF “POORLY KNOWN"
“"‘G‘Jin DIMENSION STATES IS VEAY SIMPLE

nunULUULUL ~—— MEAN.SOUARE OPTIMAL DESIGN
I 1S POSSIBLE FOR FULL.ORDER
. OPTIMALITY i‘ SYSTEM

~g——— SPILLOVER DOES NOT EXIST
L X 1/0,

N2 * MINIMUM INFORMATION MODEL
PARAMETER } € UNCERTAINTY ~—— ENVELOPES ACTUAL
‘ UNCERTAINTIES

OPTIMAL AND ROBUST
DESIGN
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" LIMITATIONS OF DETERMINISTIC DESIGN: .TBE NEED TO
S - QUANTIFY PRIOR UNCERTAINTY

Now 1let us expioré the basic ideas of the maximum-entropy modelling approach,
outlipne what is involved in its implementation, and then illustrate the various prop-
erties described above.

First, consider a structure whose parameters may be found in some “parameter
space™ as sketched in Fig. 4.a. Standard LQG-based approaches implicitly assume
that all system maps are known and, consequently, produce a design which is optimal
(with respect to a quadratic performance measure) only for a single point (associated
with the nominal values) in parameter space. However, due to actual in-mission
changes, mathematical modelling errors arising from truncations implicit in the finite
element method,; etc., all system parameters are not, in fact, known. Thus, to put the
matter in the most general terms, a structural model can never encompass the "truth" -
rather a model should be regarded as a mathematical statement of what and how much is
known. Considered as such, a model must not only specify nominal values but must also
contain an admission of prior ignorance regarding parameter deviations from expected
values. An admission of prior uncertainty cam be quantified by supposing the param-
eters to be distributed according to some probability law (see Fig. 4.b, where the
shading indicates the region of significant probability).

MODAL PARAMETER SPACE

e e °A,B... GIVEN ° ° ° o ‘
i=3x+§$
_ 1 T T
MIN: g = f dt[x"R,x + u'R, u]

Figure &4.a
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' MINIMUM EXPECTED COST DESIGN: INCDHPLBTENESS OF PRIOR
PROBABILITIES AND THE MAXIMUM ENTROPY IDEA

col AP v ity e

Thus. one might be tempted, as suggested in Fig. 4.b, to assume that all neces-
sary probability distributions are given and proceed to design a control which 1is
optimal “on the average" by minimizing the expected value of a quadratic cost. How-

" ever, the problem is more difficult than this because, in practice, a complete prob-
ability model is never available from empirical determinations. Rather, we need to

" induce a complete probability model from a highly incomplete set of available data.
A fundamental logical requirement is that this be done in a manner which avoids

" inventing data which does not exist! In other words, it is necessary to construct a
complete probability assignment which is consistent with the data at hand but admits
the greatest possible prior ignorance with regard to all other data. -This is the’
heart of the maximum entropy modelling idea. The appropriate quantitative procedure
has been given by Jaynes (Refs.1,2): first define a measure of prior ignorance, i.e.,
the entropy ("entropy" as in information theory not thermodynamics), then determine

the probability law which maximizes this functional subject to the constraints imposed
by available data.
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S TﬁE MINIMUM DATA/MAXIMUM ENTROPY DESIGN APPROACH

Having overcome the difficulties imposed by incomplete available data, it
should be noted that for flexible mechanical systems one may identify a "minimum
data set" which is just sufficient to iInduce any well--defined maximum entropy model.
In other words, all admissible sets of available data must include the minimum set,
and lack of any element of this minimum set will cause the induced maximum entropy
model to "blow up" in certain crucial respects. Since, in practice, one is provided
with little or no prior statistical data, it is not only design conservative, but
also realistic to acknowledge as available data only the minimum data set.

Thus, as sketched in Fig. 4.c, our stochastic design approach involves three
main stages (see Refs.3-5). First, the minimum data set is constructed and appro-
priate numerical values are assigned; next, a maximum-entropy probability model is
induced from the minimum data (giving the basic design model), and, finally, a mean-
square optimal design is determined under the maximum-entropy statistics. This pro-
cedure gives us a mechanism for incorporating incomplete system information within
the control design. Moreover, as Fig. 4.c suggests, the maximum-entropy model is
maximally dispersed in parameter space, and one can guarantee that the resulting
design will very greatly reduce the probability of severe performance degradation
in the face of parameter deviations.

MINIMUM DATA:
F.[p(A,B,..)]

4
MAX. ENTROPY:

H{p*] 2 H[p]
M.S. OPTIMALITY:

p*[A,8,..]
x=Ax + Bu
MIN: J% = E*[4]

Figure &4.c
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: . : mxmuu-m'mow APPROACH: SPECIFIC FEATURES
u 3 . =l . FOR STRUCTURAL :-YSTEMS

.t

g ERE

Figure 5 indicates more,specific fcatures of the maximum-entropy approach as

iy applied to linear mechanical systems. In the state-space equation at the top of the
3 figure, x denotes the state vector of the plant and any dynamic compensation that

> . might be employed, and the dynamics map is the sum of a deterministic portion, &, rep-

‘resenting the nominal parameter values and a zero-mean random portion, a. With this

form of representation, the formulation is presently capable of encompassing most of

the more serfous sources of modelling error in structural systems. In particular, a

may represent general uncertainties in the stiffness matrix and in the placement and

alignment of actuators and sensors (see Refs.6 and 7).
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\ - A suitable measure (which is particularly familiar in informat::.on theory) of _'..
. a priori ignorance is given in the figure, where p(x) denotes the probability density o
.- of the state. Actually, since entropy is only a relative measure of information, 1its )
N definition is not unique, and the expression given below is one of several possibili- :
e ties (note that Refs.3 and 5 defined entropy measures directly upon the parameter R
\“ space). Although each possibility is particularly suited tc ~ specific purpose, all !
+~!  these entropy definitions lead to the same results. In part..ualar, besides specifica- =
i tion of nominal parameter values and an enumeration of those scalar structural par- f:

ameters whose independent variation Is to be included in a, the minimum data set con-
sists of the "uncertainty relaxation times". Each of these time scales is associlated
with a particular uncertain scalar parameter, and is simply and explicitly defined in
terms of familiar statistical quantities (see Refs.3 and 5 for details). Qualita-

tively speaking, the relaxation times give the time scales over which the effects of

.

.-
FLVLY I Y

MYNS
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i

i the associated uncertainties upon second-moment response are manifested, and their -
= reciprocals constitute fundamental measures of the magnitudes of parameter deviations. {r\.
-~ The maximum-entropy model induced by this data set is a rather special form of “

Stratonovich state-dependent noise (see Ref.8), and it yieélds a modified Lyapunov

equation for determination of the state covariance matrix, Q é ElxxT }. The linear -
operator, D[.], appearing at the bottom of Fig. 5, is a mapping of the class of

E symmetric matrices onto itself, and it constitutes the principal modification. Since

X the matrix elements of D[Q] are inversely proportional to the relaxation times, this

o “stochastic Lyapunov equation' reduces to the ordinary Lyapunov equation in the

- deterministic limit (wherein all relaxation times are infinite). Since Q is the only

2 response quantity directly relevant to mean-square performance, optimality conditions

. é are obtained in the form of "stochastic Riccati equations" involving analogous modi-
- fications of the standard Riccati equation. Thus, these new forms of optimality con-

ditions contain the familiar results for deterministically parametered systems as a
special case.
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EFTECTS OF PARAMETER UNCERTAINTY iNCOHERENCE

Although inaccessible to us in practice, a complete _probabilistic deacription of-

the structure nevertheless exists in principle. The maximum-entropy model may be
viewed as an approximation to this complete probability law which extracts only cer-
tain salient features which are to bc modelled with fidelity. 'This naturally leads
to the question: What features of the actual parameter statistics are preserved in
the maximum entropy model? (Obviously, the re.axation times are preserved, but what -
is their physical meaning?) -

: To provide an answer, let us consider the effects of parameter uncertainty on

"sécond-moment response of mechanical systems generally ~ not necessarily under the

maximum entropy model. First, for purposes of illustration, Fig. 6 shows a simple
system of two (weakly) coupled oscillators in which the stiffnesses k, and k., are
subject to uncertainty. When the magnitudes of the deviations are significant and
largely independent of the detailed probability distributions of k, and k,, the
cross-correlation coefficient (defined in the figure, where (.) denotes an average

. over the parameter ensemble) of the two oscillators approaches a value of order T

after a time period of order T following some initial state. Here T is the minirum
of the relaxation times associated with k. and k This tendency of uncertainty to
suppress cross correlation among distinct modes ﬁas been termed the “incoherence"

effect, and the situation depicted in Fig. 6 may be generalized in an obvious manner
to the case of n(n > 2) oscillators.
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' EFFECTS OF PARAHETE UNCERTAINTY' ISOTROPY

i o Next consider the same system as in Fig. 6 but with uncertainty only in. the
’ coupling spring stiffness (Fig. 7). Besides the incoherence effect, averaging over
" - the parameter ensemble introduces a net power flow between the uncoupled oscillators
which tends to equalize their separate mechanical energies. For sizable uncertainty
levels and over a time of order T following some initfal state, “he system relaxes.
to a special statistical equilibrfum wherein the relative energy difference is propor- -
tional to T_ . Here again, T_ is the relaxation time (as defined in Ref.5) associated i
- with the random portion of k. Thus, for very large uncertainty (T small), this
 "isotropy" effect produces eﬁuality of energies and, from the pointcof view of. their =
second-moment response, the two oscillators are largely indistinguishable. This sort R
; of thermal equilibrium is established in an analogous manner for a large-order system -
o wherein uncertainties exist which tend to couple nominally uncoupled modes. L

The effects just discussed have been known (separately) for some time (see, for
example, Refs.9-11) and are real - not artifacts of the maximum-entropy modelling
approach. Rather, the magitudes and associated time scales of these effects are
precisely what the maximum-entropy model preserves and faithfully mode.s.
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'IHPACT OF UNCERTAINTIES ON HEAN—SQUARE OPTIHAL DESIGN

_;?_ :'fJ"5f" The gteat importance of scéurate modelling of 1ncoherence and isotropy arises

from the fact that these effects engender distinct qualitative regimes wherein mean-
square optimal control design is dramatically affected. To illustrate.this, consider
the mean-square optimal design of full-state feedback regulation (relevant equations
"are indicated at the top of Fig. 8) for a high~order stochastic model which incorpo-
.ratee the "actual"™ parameter statistics. - Also suppose that modes are arranged in
_order of increasing uncértainty levels. By virtue of the incoherence effect, there
emerges. an ‘'incoherent range" wherein the modes are (to a close approximation) mutu-
ally uncorrelated and uncorrelated with lower order modes. The remaining (low order)
. mddes retain significant cross-correlation and constitute the "coherent range”. In
* addition, for sufficient uncertainty in the structural stiffness, there may exist an
_ "isotrcpic subrange" (where approximate egquality of modal energies holds) within the
i incoherent range. Clearly, since the performance index can be expressed as a linear
function of the second moments, the contribution of all  the incoherent modes is of the
form of a weighted sum of mean squares of the separate states (as indicated in Fig. 8).
.. .. This reduction to sum of mean squares has a profound effect on the control design
because it implies that any control effort devoted to shifting modal frequencies and/or
closed-loop eigenvectors is wasted.

a

Obviously, this dramatic qualitative effect cannot be ignored.

Now the maximum entropy model not only models the above qualitative regimes faith-
fully, but in addition, the associated optimality condition (the stochastic Riccati
equation) automatically produces an Inherently energy dissipative rate feedback control
for the highly uncertain, incoherent modes. Moreover, the incoherent range corirol

design is in close conformity with the asymptotic solution of the stochastic Riccati
equation for large uncertainty levels. Since, in many instances, this asymptotic

solution can be given in closed form, one may regard the mean-square optimal design
for the very poorly known states as being known in advance of burdensome computatioms.
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In consequence, mean-square optimal design demaads s
an inherently robust positive real or rate feedback controller for the incohzrent nodes.ﬁ .
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o NUHKRICAL EXAMPLE FOR THE REGULATOR PROBLEM

‘As a apecific example, consider the regulator design for a simply supported
Bernoulli-~Euler beam with one force actuator depicted in Fig. 9. Here an energy
weighting 1s imposed on the state in the performance index, and we denote by the

. scalar p the relative control input weighting. (For complete details regarding this
example, including closed-loop poles, sensitivity studies, etc., see Ref. 12). Uncer-
tainties only in the open-loop frequencies are considered, and frequency deviations
from the nominal values, w,, are taken to be Gaussian. The corresponding relaxation
times, T » are seen to be k versely proportional to the relative standard deviations,
Op* rovide a simple model which reflects progressive degradation in modelling
accuracy with increasing modal order, we take the oy to increase with nominal fre-
quency. ) o o S :

A
POFRPYR SO

EXAMPLE: SIMPLY SUPPORTED BEAM WITH FORCE ACTUATOR

* NONDIMENSIONAL EQUATIONS
OF MOTION (@, = n?)

* “ENERGY" STATE-WEIGHTING

* UNCERTAINTIES IN OPEN-LOOP

FORCE FREQUENCIES:
ACTUATOR Vv P

okg = STANDARD DEVIATION

OF Kth MODE FREQUENCY
17/7§7 o r&

* SIMPLE UNCERTAINTY MODEL:

= 2743 . :
f& aK = oﬁx . 3

Figure 9
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- DESIGN RESULTS AND QUALITATIVE INTERPRETATIONS - S
: oo STOCHASTIC SIMPLIFICATION y

For specific values of damping, p, and uncertainty level, Fig. 10 shows the mean-
square optimal design for a 100-mode model. For clarity, we show the gain magnitudes
scaled by means of po. The position and velocity gains for each mode are shown pair-
wise, the labelling of the abscissa referring to the mode number. Note also that a
different ordinate scale was used for the last 50 modes to more clearly display the
details.

This cdesign waé obtained in less than 10 seconds computation time in the follow-
ing manner. First, rigorous bounds for the deviation of the solution of the stochas-
tic Riccati equation from the asymptotic solution are available from Ref. 3, and these

‘show that the asymptotic solution incurs negligible error (4th significant digit) for

the 25th mode and that the error declines rapidly for all higher modes. Consequently,
the solution of the full-order design equation for the last 75 modes was obtained with
virtually no computational effort. Detailed computations were required only for the

first 25 modes. Thus, because of the special structure of the stochastic Riccati equa-

tion, the results shown represent a highly accurate solution for the full 100-mode mode

The above features illustrate a general principle which emerges a’so in numerous
additional examples: Under a system model which incorporates limited a priori infor-
mation, it is always possible to so arrange matters that the burden of mean-square
optimal design computatiorn is similarly limited.

Also note from Fig. 10 that the design algorithm has automatically produced a
reasonably high gain (> 20-percent damping), which is a virtually deterministic LQ
design for those modes (the first three) associated with low uncertainty and an
inherently robust rate feedback control for the poorly known modes. These regimes
were not secured on an ad hoc basis but are limiting qualitative features of a
global design which is guaranteed stable and optimal.

STOCHASTIC BEAM PROBLEM — GAIN MAGNITUDES
(n = 0.005, p = o = 0.1)

1 VELOCITY GAIN
wmm POSITION GAIN

B N

G1 86 40 68 70 78 B0 86 90 % 100

:

MODE NO. :

3, ‘

Figure 10 :
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STOCHASTIC STABILITY AND ROBUSTNESS PROPERTIES

With regard to stability, various theoretical assurances are available for the

maximum-entropy appreoach. ~Figure 11 sketches the basic rationale for many of the

~stability and robustness proofs. First, for a variety of controller forms, unique
solutions have been shown to exist for all uncertainty levels. As part and parcel of
such demonstrations, it is necessarily shown that the mean-square optimal performance,
J* is bounded. But, under certain mild geometric conditions, this is impossible
unless the closed-loop system is second-moment stable (and hence almost surely stable).

. In addition, one has assurance of robustness with respect to deterministic system.

- stability concepts. By Lyapunov arguments and associated singular value bounds, the
range in parameter space for which stability is obtained can be shown to be comparable
to the modelled uncertainty levels (as will be illustrated presently).

The above properties thus imply that by allowing the modelled uncertainty levels
‘to increase without bound, one may use the maximum-entropy optimality conditions to
discover (or rather, rediscover!) particularly robust controller forms. As Fig. 11
indicates, this is indeed the case. We may summarize much of this work by stating:
Under the maximum-entropy model, and in the presence of very great parameter uncer-

tainty, the mean-square optimal control is a control which is inherently energy dissi-
pative.

g
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MEAN-SQUARE OPTIMALITY

ROBUSTNESS UNDER MODELLED UNCERTAINTIES

(1) SOLUTIONS TO OPTIMALITY CONDITIONS EXIST FOR ALL UNCERTAINTY LEVELS

(27 = Sth[xTRlx + szu] CAN BE MINIMIZED ONLY IF J* < o
(3) J* < ® ONLY IF SYSTEM IS SECOND MOMENT STABLE :

- ® PARAMETER SPACE STAB!LITY RANGE = MODELLED UNCERTAINTY LEVELS

) GUARANTEED STOCHASTIC STABILITY

P LI

e P_C_)SITIVE REAL OR RATE OUTPUT FEEDBACK CONTROL FOR LARGE UNCERTAINT!ES

aelen

Figure 11 : . -
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.. EXAMPLE ILLUSTRATING ROBUSTNESS PROPERTIES - STABILITY STUDIES
To ‘i1lustrate the relative stability properties of the stochastic design, con-
sider the simple two-mass system in Fig. 12 (for complete details and further results
see Ref, 13). With a single force actuator and displacement sensor located at mass 1,
it is desired to suppress the displacement response of mass 2 (thus the steady-state
performance index, J_, is as indicated in the figure). We assume that only the fre-
. quency of the singleselastic mode 1s uncertain and is subject to normally distributed
~variation with stundard deviation, ¢, relative to its nominal value, w. -~ Of course,

since only one parameter is uncertain, the range of stability in parameter space can
be shown particularly simply for this example.

The assumed observation noise, w,, requires design of a full-order dynamic com-
pensator (observer) for this system. "~The relevant mean-square optimality conditions
for the maximum-entropy model are given in Ref. 13. These were solved for a range of
values of 0. Each such compensator design corresponding to a given modelled uncer~
tainty (a given 0 value) was then interccnnected with a perturbed structural model
with modal frequency w(l + 8). Thus § is the deviation of the frequency relative to
the nominal value, w. Stability was then checked for the closed-loop system over a
range of values of §.

TWO-MASS SYSTEM

21-—--xl 21-—.—1(2

u
- m, = 1 J\ﬁV\, m, = o W

'-i—
TAS S

y =X+ W,

PERFORMANCE INDEX: J, = E [x2 +u?]

ASSUMING FREQUENCY
IS GAUSSIAN: T= LT

"Figure.iz



EXAHPLE.PROBLEH -~ STABILITY BOUNDARIES

. The results of the stability study are summarized in Fig. 13, Thus, for example,
the deterministic, LQG design (0 = 0) is uunstable for relative frequency variations o
between ~10 percent and -50 percent and greater than +30 percent. Om the other hand,
progressive increase of the modelled uncertainty level dramatically widens the sta-
bility range. In fact, as the figure makes evident, stability is guaranteed for
§ < 0. Note that if 8 is randomly distributed but of bounded variation, ¢ may always
be chosen to guarantee stability. On the other hand, if § 1§ raundomly distributed
with unbounded variation, appropriate choice of ¢ can still reduce the probability of
instability to any desired level. Thus, a striking illustration of the general robust-
ness results discussed is evident. Similar stability studies have been performed
and analogous results achieved in other much more complicated examples (see Refs. 13-14).

(Unstable Region Shaded)
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~ " MEAN-SQUARE OPTiiiAL DESIGN: IMPOSITION OF
: - S IMPLEMENTATION CONSTRAINTS

Thé femainder of this paper conéideiQMQAriéds optimization issues. As noted,

) © we attained a maximum-entropy formulation for implementable compensation by first

- considering the simplest controller .form, i.e., full-state feedback regulation, and

o then by progressively removing idealized restrictions. This stage-by-stage develop-
-3 ment is summarized in Fig. 14. As mentioned, the maximum-entropy model conjoined with
q . mean-square optimization gives rise to new forms of optimality conditions. For

Iy example, determination of the mean-square optimal regulator requires solution of the
3? stochastic Riccati equation (for its.definition and basic properties, see Refs. 3, 4,

= 5 and 15). fThis equation reduces to the standard Riccati equation in the determinis-
: tic limit, but, as the foregoing beam example illustrates, new convergence properties
are exhibited in the presence of uncertainty. : B :

Next, the unrealistic restriction of full-state feedback was removed - and state
information was assumed available only through a limited number of sensor outputs.
NG Assuming mon-singular observation noise, the case of full-order dynamic compensation
S was considered and appropriate optimality conditions derived in Refs. 13 and 14. These
: results show that in the presence of uncertainties, the separation principle no longer
holds. Indeed, the optimality conditions determining the regulator and observer gains
(k and F, respectively in Fig. 14) are determined by two coupled stochastic Riccati
equations together with two additional Lyapunov equations. The appended Lyapunov
equations secve to determine two auxilliary cost matrices which characterize the error
"leaking through" from regulator to observer (and vice versa) due to the action of
parameter uncertainty. Despite this additional complexity, efficient numerical pro-
cedures for solution of the full optimality conditions have been developed and success-
fully applied to a variety of example problems (of which the two-mass system considered
above is the simplest case). Finally, it should be noted that various desirable fea-
. tures observed for the regulator problem, i.e., stochastic simplification and the
o= automatic emergence of a simple, dissipative control for the poorly known modes, are
also obtained in this less idealized setting.

gi The next and final stage in the development of suitable optimality conditions

" removes the assumption that the compensator order is equal to that of the plant.
o Clearly, while the structure is of infinite dimension, on-board software limitations
force the compensator order to be rather modest. Thus it is necessary to design a
mean-square optimal, dynamic compensator whose order (N ,N < 2n) is preassigned by
the designer. This is the problem of optimal, linear, 9 9 fyxed-order dynamic com—
f‘ pensation and quite apart from the inclusion of parameter uncertainty effects; the
kN results presented in Ref. 16 are new. 1In place of the purely computational approach
- which combines gradient calculation with parameter optimization dlgorithms, Ref. 16
provided, for the first time, explicit optimality conditions for fixed-order compensa-
tion. As in the case of full-order compensation, these conditions amount to two
s Riccati~like and two Lyapunov-like equations. A qualitatively new feature, however,
:i is that these equations determine not only the optimal gains but also a projection
- (idempotent matrix) which defines the N _-dimensional observation and control subspaces
o of the compensator. This "“optimal projéction" essentially characterizes the geometric
o structure of a reduced-order model of the plant which 1s employed internally by the
compensator. For example, the usual modal truncation approach to model reduction is

. tantamount to the assumption that the projection is of the canonical form 1N 0
fi in the modal coordinate basis. However, in most instances, the true opti- q

- mal projection is far more general than this, and, in contrast to all pre- | O 0
it vious approaches, the conditions of Ref. 16 determine both the gains and

i the optimal compensator structure with its associated reduced-order model.
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Vhrious theoretical prooerties of the fixed-order compensation optimality condi-
In particular, solutions of these equations give
rise to a_contrel. for which ‘closed-loop stochastic stability and mean~-square optimality
Moreover, solutions exist of a highly simplified asymptotic form for

thogse high-order, poorly known modes constituting the incoherent range.
the regulator problen, the optimization computations can be carried out for very large

tions are elaborated in Ref. 17.

are guaranteed.

order systems.

Thus, as in

CONTROLLER FORM VARIATIONAL PROBLEM OPTIMALITY CONDITIONS
{"A" is Uncertain and Treated Under o SPECIAL FEATURES
the Max, Er.tropy Model)
STOCHASTIC RICCATI EQ'S
FULL STATE MIN: 1 = S‘ dr 7 {x R x + uTR2 ] e NEW CONVERGENCE
FEEDBACK k PROPERTIES WITH
INCREASING MODEL ORDER
)'('Ax-+Bu+wl;x€R2n
v =k ., uoe€ r!
FULL-ORDER 3mMt AS ABOVE, EXCEPT: COUPLED STOCHASTIC
COMPENSATION P RICCATI EQ'S
v=-kqg , v eR
2 e NO SEPARATION PRINCIPLE
G=o0q +F , qe¢€R "
y = & + w, ; Y€ R
FIXED-ORDER SAME AS ABOVE, EXCEPT 'COMPENSATOR STRUCTURE
COMPENSATION N DETERMINED BY OPTIMAL
q PROJECTION
q ¢ R s, N £ 2n —
q
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GENERALITY OF THE OPTIMAL PROJECTION APPROACH TO FIXED-ORDER COMPENSATION

A further property of the formulation of Ref. i6 is its considerable generality,
as indicated in Fig. 15. Although the original derivation assumed nonsingular obser-
vation noise and thus permitted no direct sensor feedback, the conditions of mean~
squarc optimal output feedback can be recovered from the equations of Ref. 16 as a
special limiting case. Also if N_ is set equal to the plant dimension, the optimality
conditions immediately reduce to fhose of Ref. 13. 1f, in addition, no parameter
uncertainty exists, the full-order compensation optimality conditions diractly yield
the uncoupled Riccatl equations of LQG theory. Finally, a variety of LQG-based tech-
niques with their assorted model reduction schemes can be seen as special approxima-
tions to the present optimality conditions (see Ref. 17 fotr further details regarding
the relations between the optimal projection and rodern modal control approaches).
Thus, the optimal projection formulation has the conceptual scope needed to assess
the relative merits of the various more specialized design schemes that have been
advanced in the recent past.

FIXED-ORDER COMPENSATION
THROUGH OPTIMAL PROJECTION
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M.S. OPTIMAL, FULL-ORDER COMPENSATION
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M.S. OPTIMAL OUTPUT FEEDBACK
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- HAIIHUMPENTROPY HODELLING CONJOINED WITH OPTIMAL PROJECTION:
' IOHARD MECHANIZED DESIGN SYNTHESIS

: Although numerical techniques for solution of the fixed—order compensator opti-
= mality conditions are based primarily upon software previously developed for full-
A order compensation, it remains to consolidate this software and explore fixed-order

: design for representative example problems. The theoretical properties mentioned
‘certainly provide strong impetus for completing this task, and our immediate object

is the design synthesis software package indicated in Fig. 16. Given a high-order
plant model {specified nominal values and uncertainty relaxation times), together with
quadratic control objectives and a specified compensator order, this software package
would handle the optimization computations via a two-level iterative method employing
efficient relaxation techniques for the incoherent regime. Because of the guaranteed
system properties listed at the bottom of Fig. 16, the need for direct human interven-
tion in the control design process would be largely eliminated. The designer's

burden is thereby greatly reduced, and all that is required on his part is a familiarity
with the meaning and impact of uncertainty relaxation times and some design experience
with quadratic optimization.

. TP
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a

P URTERSY

MODELUNG OBJECVIVES
G ® NOMINAL VALUES STATE AND
- ® RELAXATION TIMES CONTROL INPUT
p WEIGHTING 'AATRICES
L] o
-'.‘_ DESIGN SYNTHESIS
z BOUND DEVIATIONS FROM
N ASYMPTOTIC SOLUTION
- AND DELIMIT COHERENT
o RANGE
i Y
3 SOLVE FULL OPTIMALITY

CONDITIONS BY TWO-LEVEL
METHOD
P Y Y
. ® MZAN-SQUARE OPTIMAL DESIGN ® STOCHASTIC SYSTEM IS 2nd
. MEAN AND ALMOST SURELY
. ® NOMINAL SYSTEM IS STABLE STABLE
L e ROBUST STABILITY
: UNDER MODELLED UNCERTAINTY
: " LEVELS
Figure 16
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.." ' UNIFIED STRUCTURE/CONTROL DESIGN SYNTHESIS

The contemplated design optimization package would be of particular usefulness
in performing trade-off studies needed for the overall structure/control design syn-
thesis (see Fig. 17). In the very eurliest design stages, the theory underlying the
control design package can be used to delimit the various qualitative regimes and '
bound the best achievable mean-square performance for several candidate structural
design concepts. This would allow computationally simple performance trade-—off - -
studies. - including the effucts of a priori modelling uncertainties, actuator/sensor

" placement, etc. Such studies would permit the early elimination of those structural
concepts which are not feasible in view of the performance requirements. In general,
-the control design approach outlined here would help to guide the structural design
according to the inherent capabilitier and limitations. of fixed-order compensation.

In the later stages of design (with a reasonably well-defined structural concept),
the control synthesis softsare could be used to achieve a dynezmic controller of lowest
order which meets performance requirements. If the resulting compensator order also
satisfies on-board computational coustraints, a final linear system design 1is achieved
which produces acceptable performance despite parameter uncertainties taken at their
a priori levels. In this case, the need for parameter identification would be obvi-
ated. Generally, however, a priori uncertainties may be so large that the robustness
level produced by the control design synthesis package is too high to permit good
mean—-square performance. Here, the design synthesis package of Fig. 16 can be
employed iteratively to establish the gradients of performance with respect to the

various relaxation times. This would permit one to enumerate those (relatively few)
o -"ecrucial" structural parameters that must be identified in order to secure the
ﬂ required performance. Considerable simplification thereby results for identification

- algorithms, since only the crucial parameters need be addressed. -

ey 4o PR

. JSAD,
% et

‘e LI Y EA S

SYSTEM MODEL

e STRUCTURAL CONCEPT (a)
- {a priori Uncertainty Levels)

® OBJECTIVES q————---————————_——-ﬁ.

¢ DISTURBANCES

RN
el

- ' \\
@ BOUNDS FOR M.5. OPTIMAL
PERFORMANCE ~~—p TRADEOFFS DESIGN SYNTHESIS
OF FIXED-ORDER

COMPENSATION FOR
IDENTIFY “UNFEASIBLE" UNCERTAIN STRUCTURES

sla’i

P
Tes

.'- ll

o STRUCTURES

'":;: []

P R S,
- t IDENTIFICATION
o PERFORMANCE AND COMPENSATOR | Acaonmkms |
O ORDER ACCEPTABLE ? 1 -CRUCIAL PANAMS. |
e L» ONLY 1
<l | o
':‘ YES N . nNO - ) . o f
! FINAL LN o ENUMERATE “CRUCIAL"”

svm:nuo:::n PARAMETERS THAY

o MUST BE IOENTIFIED

e
A leliae

© Figure 17

./;'!“l ..

iy

»
Vs

»!

RERY



.

.
”
p
3
ca
.
-
.
.

2.

MPTYTN|

3.

5.

6.

9.

10.
11.

12.

13. .

 REFERENCES

--Jaynes, E. J., "New Engineeriﬁg Applications of fnformation Theory,"

Yroceedings of the First Symposium on Engineering Applications of Random
Function Theory and Probability, edited by J. L. Bogdanoff and F. Kozin
(Wiley, New York, 1963), pp. 163-203, ) :

Jayhcs, E. J., "Prior Probabilities,” IEEE Trans. Systems Sci. Cybern., SEC-4,
227 (1968). T .

Hyland, D. C., "Optimal Regulation of Structural Systems With Uncertain Param-

eters,"” MIT, Linioln Laboratory, TR-551, 2 February 1981, Defense Documentation
Center AD-AQ99111/7. . _

Hyland, D. ., "Active Control of Large Flexible Spacecraft: A Wew Design
Approach Based on Minimum Information Modelling of Parameter Uacertainties,”
Proceedings of the Third VPI&SU/AIAA Symposium on Dynamics and Coatrol of
Large Space Platforms, Blacksburg, Va., June 1981.

Hyland, D. C., "Minimum Information Stochastic Modelling of Linear Systems With

a Class of Parameter Uncertainties,” No. 9474, IEEE American Control Conference,

Arlington, Va., June 1982,

Hyland, D. C., "Maximum Entropy Stochastic Approach to Control Design for

Uncertain Structural Systems," No. 9475, IEEE American Control Conference,
Arlington, Va., June 1982,

Hyland, D. C., "Robust Spacecraft Control Design in the Presence of Sensor/

Actuator Placement Errors,’ No. 82-1405, AIAA Astrodynamics Conf., San Diego,
California, August 1982.

Stratonovich, R. L., "A New Form of Representation of Stochastic Integrals and
Equations,”" SIAM J. Contr. 4, 352 (1966).

Kistner, A., "On the Moments of Linear Systems Excited by a Coloured Noise
Process," in Stachastic froblems in Dynamics, edited by B. L. Clarkson
(Pitman, London, *.s/), pp. 36-53 .

Ungar, E. E., "Statistical Enezgy Analysis of Vibrating Systems," Trans. ASME,
J. Eng. Ind. 89, 626 (1967).

Lyon, R. H. and Maidanik, G., "Power Flow Between Linearly Coupled Cscillators,”
J. Acoust. Soc. Am. 34, 623 (1962).

Hyland, D. C. and Madiwale, A. N., "Minimum Information Approach to Regulator
Design: Numerical Methods and Illustrative Results," Proceedings of the Third

VPI&SU/AIAA Symposium on Dynamics and Control of Large Space Platforms,
Blacksburg, Va., June 1981.

Hyland, D. C. and Madiwale, A. N., "A Stochastic Design Approach for Full-Order
Compensation of Structural Systems With Uncertain Parameters,” No. 81~-1820,
ATAA Guid. & Contr. Conf., Albuquerque, New Mexico, August 1981.

95

 e—aagwve- =

LR (1T ey AR TR (e -8 ¥

PR [ L TR RN P O At S



9

SiLOK ettt sl

o~ .-‘A ‘ L’l .D'.l 'r.__.,h ‘l-,'.

e td e ray

14,

15.

16.

17.

Ayland, D. c.,.“Hean-Square'Optimal; Full—Ordér Coﬁpenqation of Structural
Systems With Uacertain Parameters,” MIT, Lincoln Laboratory, TR~626.

Hyland, D. C., "Optimal Regulator Design Using Minimum Information Mcdelling of
FParameter Uncertainties: Ramifications of the New Design Approach,”

Proceedings of the Third VPI&SU/AIAA Symposium on Dynamics and Control of
Latge Space Platforms, Blacksburg, Va., June 1981.

Hyland, D. C., "Optimality Conditions for Fixed-Order Dynamic Componsation of
Flexible Spacecraft With Uncertain Parameters,"” No. 82-0312, AIA\ Aerospace
Sciences Mtg., January 1982. .

Hyland, D. C., “Mean-Square Optimal, Fixed-Order Compensation-Beyond Spillover

Suppression,”™ No. 82-1403, AIAA Astrodynaumics Conf., San Diego, Califorunia,
August 1982,

Ciwl e



e e

SR

Bes

ANALYSTS METHODOLOGY

Chairman: V. B. Venkayya :
Secretary: John Gubser

TR IR ST

- - : . e s e e m et
S S AT e R Y DI I ST M T A S T N e 4 P P~ T O LT, SRRt S T W SRR Y

| R S

W WL e

THR DN e Tl e

]

/ . ' i



« .~ A COMPUTATIONAL APPROACH TO THE CONTROL OF
B LARGE-ORDER STRUCTURES
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" EQUATIONS OF MOTION FOR THE STRUCTURE
Kinetic Energy: T(t) = 3 [ m(®)iT(P,c)a(P,t)dD(P)

u(p,t) - disﬁlacemeut vector

‘m(P') = mass density

D = domain of cxtensicn of the structure
: P = nominal point

_; Potential Energy. V(t) - —-[u, u]
[ s 1= energy inner product (Ref 1)

Virtual Work: &W = [ £7(P,t)su(P,t) dD(P)

" £(P,t) = distributed force (actually explicit function of state rather than of

spatial position and time)
su(P,t) = virtual displacement

t
Extended Hamilton's Principle: J 2 (6L + &W)dt = 0,
t
1 Su(P,t) = 0, t = t;, t

° 3

L =T = V = Lagrangian

2;I‘ED

Partial Differential Equation of Motion for the Structure (Ref. 1):

luy+Mu=€, PeD

L = Differential operator matrix with entries of order 2p
M = Mass matrix

Boundary Conditions: Big =0, Pes; 1=1,2,...,p

B, = Differential operator matrices with entries of maximum order 2p-1

S” = Boundary of D

STRUCTURE DISCRETIZATION BY THE FINITE ELEMENT METHOD

Linear Transformation: u(P,t) = L(P)q(t)

L(P) = matrix of interpolation functions (Ref. 1)
. q(t) - vector of nodal coordinates

_niscreuzed Kinetic and Potentisl Energy' T = % a™Mg , v =3
M= !D L (P) ML (P) dD(P) = mass matrix M= M: , M0
K= [L(P), L(P)] = stiffness matrix, K = K?, K>0

.Discretized Virtual Work: oW = érﬁg
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g I L (P)f(P t)dD(P) = nodal fotce vector
Discretized Equations of Hotion. Hg + Kq = Q

. Equations have appearance of an n-degree-of-freedoﬁ discrete system.

NATURE OF THE DISCRETIZED SYSTEM

A discretized model is & truncated model meant to represent a distributed structure.

Eigenvalue Problem of Order n: K(n)gﬁn) = Ain) M(n)gﬁn) ™1,2,...,0 ,
K(n). M® = 4 x n stiffness and mess matrices - = :f.-ZV"'?’:_f N

= computed eigenvalues, x{n):}gn):’..:lén)
= n-dimensional eigenvectors

o™

Eigenvalue Prcblem of Order n + 1: K(n+1)gr(n+1) - A:n+1) “(n+l)g£n+1)

r=1,2,...,n#l1

(o+l) ., (n+1) (n+1)
Al 2, SeeefA

Inclusic.: Principle (Ref. 1): x§“+1)_<_A{“)9§“+1)_<_A§“) <x(“+1)<x(“’gt(‘:‘_;1)

Convergence Property: 1im X(n) =X, r=1,2,...,n
e T T

Paradox: By increasing n, more computed eigenvalues tend to be accurate, but new
ones are added at the high end of the spectrum, and the latter ones tend
to be wildly in error.

Conclusion: MNo discretized model can yield a complete and accurate representation of
a distributed structure,
MODAL EQUATIONS OF MOTION FOR CONTROL

Consider an n-degree-of-freedom discretized model, but drop superscript (n),

Ar = computed eigenvalues, 9. = computed eigenvectors
Computed Eigenfunctions for Distributed Structure: gr(P) - L(P)gr, r=1,2,...,Nn
Structure is self-adjoint —> modes are orthogonal (Ref. 1) and can be normalized

qTH = 6 qTKq -2 r,s8 -.i 2,.000,0

._qu s’ ’ T rs’ » L

Consequence: f ¢ (p)m (p) dD = ts jD (P)L¢ (P) dD = A 8 __, £y ® 1,2,...,0 !
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' Expmiion 'll‘heore-_(l-le.f.. Il): . u(P t) = Z 0 (P)u {-‘-
_ e =1 .

w.(t) = modal cobrdinai:es ' :
N = numbet of modes retained in the model, N<<n

_ Modal Equations. u(t) + Ag(t) = f(t)

u(t) = [ul(t) uz(t) ces uN(t)]T = modal displacement vector
£00) = [£,(0) fzct)‘... £ ()17 = modal control vector
A = diag [11 Az... A ] = diag [mi g coe wﬁ] = natr.::l.x of eigenvalues

.t = natural f'requenci'es

Modal Controls: £ (t) = [ ¢"(PYE(P,t) dD, r=1,2,...,N

COUPLED MODAL CONTROLS

Feedback Control Vector: f = f(u, 5._1)

M

Distribut. 4 Controls in Terms of Discrete Actuators: f(p,t) = Z Fj (t) G(P-Pj)
=1

Fj (t) = d:lscrete—point controls, J=1,2,...,M

a

Modal Controls: f_(t) = 2 Iy ¢:(P)§ (£)8(P-P,)dD = 2 ¢ (P

YF, (), r=1,2,...
§=1 h| 41 37-3

Control Spillover (Ref. 2) Into Unmcdeled Modes: £ (t) # 0, r=N+1,N+2,...

Modal Feedback Control: f =B F

1
T T T
B = Modal Participation Matrix, B = 2 [ Br [Qr(Pl) Qr(PZ) Qr(PM)]

& ™

N
Modal Equations: wu(t) + Au(t) = B F(t)

: / Nc controlled modes
N modeled modes

SRR SIS £ RS |

_\ N, residual modes ¢ R :

o g roto 1w Be

- Modal Equation in Partitioned Form: |[-==-|+ ] m il S ud B4 :
o e R | e - R 1
Feedback Control Vec_to;: Fe= Gl ‘~’C + (':2 u.
Gy Cz = control gain matrices
I !
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7 Clon-2d-Loop Modal Equations: + 5 1 0 =
- B 56y | dR
E B PR Ty | -
= “BgGy 1l % - |
= closed-loop poles of the controlled modes are determined by -B Gl and Ac -Bccz..
g CIQsed -loop poles of the residual modes are de\.emined by "R'
E. . Conclusion: Closed—loop poles; of the residual modes are not affected by feed-

back controls; therefore, control spillover into the residual
modes cannot destablize these modes. i

CONTROL IMPLEMENTATION USING OBSERVERS

.

R L)

ntl

- v R | B2

x: State Equations of Motion: .C = Ac Cl+ -E-;-’— F

“ii 4 o 15 || % R

2.  Feedback Control Vector: F = Gy G.=[G, G,)

= c~C C i 2

- «T T,T

g Yo [gc gC] modal state vector
0}-A 0}- B B

¢ AC - ..—+-_g- N A'R - __.+_fB . B(': - __g_ , Bl'z - __B_,

I| o 1{ 0 0 0

Displacement Measurements Vector: z(t) = Cu(t) = C (r.) + CRu.R(t)

Velocities Measurements Vector: z(t) = Cg(t) - chc(c) + CRg.R(t)

Q(Pl)

C = o(Pz)

¢(PK)

¢(Pi) = modal matrix evaluated at P = P

i
K = number of sensors

Output Vector: y(t) - Ccvc + CR Ve

The term C'v, gives rise to observation spillover (Ref. 2).
~R

2 -~ 1
: v A.lO v B. K -
Lunenberger Observer: -:g- - cf 1+ ¢ F+ - (y-y),

YR Y ¥ By Kr

. - - - ) “ "
- Y7 Cc¥e * GrYp

0 RN 0 e A0 1 A o G S WA
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|
er
&

=‘-’
—Ei "§R = ogtimates of !Cf.!k | - ) ':
‘!" 'Kc. KR-- observer gain matrices, chosen so that §c approaches yc'expoaentialiy

i i = gbserver output

Feedback Control Vector: F = GV

Erroxr Vectors: €. VYo~ Vo r» ST VRV

R R

.w:g!ffﬁfh_

State and Error Equations Combined:

= - | - -
- o . . T
= Ye Ao+ BiGo | O B.G, 0 Ve _
=-'.~ e . . K . - Al
R | BeBe 1 A& BeSc 0 YR
L 3 - N -' '
€c -0 0§ Ac - KeCe KcCr €c
e - ' - '
R ° 0 KgC %% || %

Conclusion: Observation spillover exists but cannot destabilize the system if the
observator gains are chosen properly.

CO% ROLLABILITY AND OBSERVABILITY

Controllability Matrix: C = [B' | A R' |aZp' | -— P aZNe-1 54y
y : c 1 7%c"c 1%°c i 1 8% c

For system to be completely controllable, C must be of rank ZNC(Ref. 3).
Controllability Matrix for Discretized Model:

2
0 ACBC o ACBC 0

C = N N
(-1) c-1 Acc 1 B

0 B

C 0 -AB

cC

]
i
!
!
Y
]

For system to be completely controllable, all rows of BC must be nonzero.

2N
T T,7 C-1 C'T]

T T ! :
¢ c 1 A c

. 0=fc'T |
Observability Matrix: 0 = [C c i Ao C'e |

For system to be completely observable, ( must have rank ZNC(Ref. 3),

ap? ¢

Observability Matrix for Discretized Model:

T | YL a2 cT | i :

0 = [Cc i (1] ] i Ac cc i , | Ac CC I 1 . 0 ] ;

|- : C-1 4

lolncch 0 “cccg 0 | AC-1c,

i . e T . . L . 4

For system to be completely observable, all columns of Cc_must be nonzero. .
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HODAL FILTERS (IN SPACB)

Second Part of Expansion Theorem. u (t) - f ¢ (P)Mu(P t) dD
. r=1,2,...

u (c) - [ ¢ (P)Mu(P t) dp

u(pP,t), é(P,t) = distributed measurements

Integrals filter out contributions from modes ¥ r, hence, the term modal filters

(Ref. 4).

- Dircrete Measurements: Use K sensors to produce discrete measurements. Then, use
the finite element method to generate estimates
:u(P t), u(P t) of u(P,t), U(P,t).

Modal Filters for.Discrete Heasurgments: gr(t) - IDQr(P)MQ(P,t) dp

. T . r-1.2,....Nc
o () = [ ¢ (P)Ma(P,t) dD

Finite Element Approximation: u (P t) = L (P)y,(t), o (P,t) = LT(P)' (t), PeD
¥y b1 43 i

1i=1,2,...,K-1
yi(t), ii(t) = aodal measurements vectors
K-1 K-1 .
Modal Filters: u () = 2 f ¢ (P)Mu (P,t) dd = § 1,y (v), u () =3 I_.y. (t)
ri =4 ri~i
i=1 i=1 i=1
= f ¢T(P)MLT(P) dD (computed off-line)
i Di~r
INDEPENDENT MODAL SPACE CONTROL (IMSC) METHOD
(1) Control of Distributed Structures by Distributed Actuators
Infinite Set of Modal Equations: u, + mi u, = fr’ r=1,2,...
Special Case of Modal Feedback Controls: fr - fr(ur‘ ﬁr). r=1,2,...
Note: The rth modal control depends only on the rth modal coordinate and
velocity.
Consequence: System becomes c. .pletely decoupled; therefore, the control for
each mode can be designed independently of any other mode.
Synthesis of Actual Distributed Controls from Moa. | Controls (Ref. 4):
: f(r t) = Z th (" ®
L r-l _
Note: If only Ng modes are to be controlled, then set f. = 0 (r > N¢), which
. implies no control spillover into the unconttolled modes,
105
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i.inear Controls: fr -G [ u + G r2 r’ r -_1.2','.:_'.. ’

crl’ Grz = modal ga;ns

- Nonlinear, On-Off Controls (Ref. 5): f. = {-k_, U >d; 0, Iur|-< dr;'kr, u, < - dr}

kt = control sain parameter 1_,_-' : r=1,2,...

'Zdr = ﬁagnitude of dead—bénd iééionv

(11) Control of Distributed Structure by Discrete Actuators

Equations for Control of Nc.Mpdes: C + Acuc - f.= BcF
' +

Synthesis of Aétual Controls from Modal Controls: F= Bbf ; M< Nc

-1 ’
F= B f sy M= Nc

In the latter case, the number of actuators must be the same as the number

of controlled modes.

Equations for Uncontrolled Modes: §U + Augu = BUE = BUBEIQC

Control spillover into the uncontrolled modes does exist.

No instability is possible.

o <]

(11i) Control of Discretized Structures by Distributed Aétuatots
N

Saxe as (i), except, that f(P,.: = Z M(PYe_(PYf _(©)
=1

No control spillover ints the uncontrolled modes exists.

(iv) Control of Discretized Structures by Discrete Actuators

Same as (i1).

COMPUTATIONAL ALGORITHMS FOR CONTROL

(1) Pole Allocation

Select Closed-Loop Poles Pr (k!1,2,...,2Nc)
State Equation for Single Input: §C - ACYC + bé F(t)
 Single Input Peedback. F(t) - gc c ' |

gb.- gain vector
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x (pk -2

2No .
T, ) :
veb' ¥ (A - A
3=c 1 k3

2% A

)

"!3 (5-1;2;.;.,2Né) = left eigenvectors of Ag - . .
General Multi-Input Control Is Not Fearible. ' '

Dyadic Control (Inputs Are Proportional to One Another): F(t) = chc(t) : .
' ' " ::‘:_Gc:- gain matrix .

2Nc T - ""
L a2 2
Ge=h ] N
=L JTah. %" (L - A
vyPct- T G -
k¥l

3)

Closed-Loop Poles for IMSC: pr =-q * 1Br, r=1,2,...,N T

c

)ur(t) + Zurur, r-1,2,...,Nc . -~

L]

. - (0l _ o2 _
Modal Controls: fr(t) (mr a. )

(41) Linear Optimal Control

/J
t £ '

Performance Index for Coupled Controls: J = [ (ggbyc + ETRE) de LT

0

Q, R = Weighting matrices
Optimal Control Vector: F(t) = -R-lB'TK(t)yc(t)
R(t) = ZNC x ZNC matrix satisfying the Riccati equation
.-_ _T_ - '-I'T
K= KA, -~ AK-Q-KB'RB"K
Steady-State Case: K = 0

Nonlinear algebraic matrix Riccatt equation can be transformed to eigen-
solution of a real general matrix.

Algorithm requires 600 Ng multiplications for convergence.

Transient Case: K ¥ 0 ST   -:-' S - ' ,. e I

Nonlinear ﬁatrix Ricchti.equation can be transformed into a 4N x 4&0 linear

matrix equation, which must be integrated on-line. Process requires ample
computer capacity, which may make real-time implementation impossible.
. 107
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j ' Performance Inﬂex for IHSC:

- -ﬁ.‘nl fz
Je-

r-l

J - 1ndependenc -odal performance indicea

Jr = j:f(thr v, + f R /w )dt, r-l,2,...,¥c _X»
; Qr =2 x 2.diagonh1 matrix, R, ~ scalar
t ~ Solve N Matrix Riccati Equations of Order 2. _ _ j
3 Steady-State Case Requires N /2 Operations, Fewer by a Factor of 1200 Than E
- Coupled Controls.. .
i Transient Case Implementaticn in Real Time Is Possible.

(XYY

Q COMPARISON OF COUPLED CONIROLS AND IMSC ;o
% , L
§ Advantages of Coupled Controls: Fewer actuators, provided controllsbility is oL
X ensured, <
k <
i Advantages of IMSC: :
Q a) Larger choice of control techniques, including nonlinecar control -
- b) Lower computational effort (Table 1) \
i) ¢) Lower computer storage requirement B
- d) Lower control energy (Ref. 6)
‘ e) Locations of actuators not important (Ref. 7)
i f) Provable robustness (Ref. 8)
? Some of these advantages are illustrated in Figures 1-5.
- Number of Time
3 Actuators (s) - l:
. Y
: § 4 176.5 T
: : 6 127.1 :
3 3 8 104.5
° 10 100.0 .
; Y 12 87.7 )
3 S :
N ' :
? HMSC 12 2.3 Y
; " Table 1l.- Computational effort required to solve the Riccati equation. : .
< .
3 108 i
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1 actuator
5 actuators (IMSC) .

.00

Figure 1.~ Displacement at ihe end of the bar - pole allocation.
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Figure 2.- Energy required for the controlled modes - pole allocation.
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Figure 4.- Displacement at the end of the bar - optimal control.
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Figure 5.- Force in the 12th actuator - nonlinear control.
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.-+ ANALYSIS AND TESTING
. ++isi. OF LARGE SPACE STRUCTURES

C. V. Stahle
Space Systems Division, General Electr

ic Company
Valley Forge, Pennsylvania
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" GROUND TEST CONSIDERATIONS

Figure 1 outlines key considerations for performing ground tests of LSS. The large
size combined with the loading due to gravity will make testing of the complete struc-
ture difficult. Gravitational stiffening, suspension effects, virtual air mass, pre-
loads, and air damping will alter the dynamic characteristics. Low resonant fre-
quencies and high modal densities within the frequency range of interest combine with
small motions and accelerations to make testing difficult. Mechanism complexities
and nonlinearities associated with space-erected/assembled structures cause struc-
tural complexity regardless of other considerations. From these considerations it ap-
pears that ground testing of a complete LSS will be difficult if not impossible.

e LARGE SIZE

e GRAVITY - STIFFENING, LOADING
e AIR MASS, DAMPING

e LOW RESONANT FREQUENCIES

e HIGH MODAL DENSITY

e SMALL MOTIONS/ACCELERATIONS
o SUSPENSION EFFECTS

e MECHANISM COMPLEXITIES

® NONLINEARITIES

GROUND TESTING WILL BE VERY
DIFFICULT IF NOT IMPOSSIBLE

Figure 1

o
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. GROURD TEST APPROACHES
FPigure 2 outlines some approaches to ground testing. Scale model testing can cver-
come the size and gravity effects but does not assure detailed representation. Element
tests provide a means of supplementing model tests and will be particularly effective
‘for items such as joints. Substructure testing appears to be the most promising, en-
abling dynamic behavior of actual structure to be measured while overcoming some of
the concerns (e.g., size, gravity, modal density). Intentional linearization of the
structure will be helpful in minimizing test problems associated with small orbital
motions. A separate analysis of the test configuration will probably be required in

- Taat some ground test effects will undoubtedly be present. Most likely, tests will be

~ 'irected toward verification of analysis using either models or partial structures.

o PERFORM SCALE MODEL TESTS

° e PERFORM ELEMENT TESTS

e TEST SUBSTRUCTURES ;
e LINEARIZE STRUCTURES

e PERFORM SEPARATE ANALYSIS OF GROUND TEST ARRANGEMENTS

TESTS WILL BE DIRECTED TOWARD
ANALYTICAL VERIFICATION USING
MODEL OR PARTIAL STRUCTURES

Figure 2
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" ROLL-UP SOLAR ARRAY MODAL TEST

The modal test of a roll-up solar array performed at GE, Figure 3, indicates test ap-
proaches which have been used. The test was performed in the large vacuum chambeér
(32 feet diameter by 54 feet high). The array was hung downward to eliminate suspen-
sions.and preclude excessive gravity loading. Sinusoidal base motion was used to
excite the array. Special low-frequency test equipment was used including an oscil-
lator/analyzer that would provide a "hyperbolic" sweep (log rate increasing with fre-
quency to provide constant resonant sweep distortion). Air caused a 60-percent re-
duction in the fundamental frequency and an order of magnitude change in damping.
Cravity, included in the analysis, shifted the fundamental resonant frequency by

a factor of 2. Low-frequency sinusoidal testing was found to be tedious and very
time consuming. :

SHAKER
ELECTRO-

OPTICAL
TRACKERS e DC COUPLED HIGCH-DISPLACEMENT VACUUM RA
VIBRATION EXCITER

o LOW-FREQUENCY SWEE™ OSCILLATOR
WALKWAY .008 Hz
E LINEAR, LOGARITHMIC OR HYPERBOLIC Sw!
I ® NONCONTACTING VACUUM RATED SENSORS

e CO/QUAD RESPONSE MEASUREMENT

® BASE MOTION EXCITATION
® NO SUSPENSION EFFECTS

® ANALYSIS INCLUDED GRAViTY

e AERODYNAMIC EFFECTS SHIFTED THE FUNDAM”
RESONANCE 60 PERCENT

e GRAVITY SHIFTED THE FUNDAMENTAL RESCN
8Y A FACTOR OF 2

TEST ARRANGEMENT

. 1
116 ]
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~ Figure 3 .
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..~ DESIGN DEVELOPMENT AND m’xncuiou' ,

The development and verification vrocess for LSS will differ from that currently being
used for spacecraft as indicated in Figure 4. Present practices rely primarily on
ground tests to verify the design and verify workmanship for the flight unit using a
protcetype (qual) structure. . Testing of the complete LSS will not be practical. Ground
tests will be used primarily to verify analysis, and the use of a prototype structure.
will be eliminated to reduce cost. A key feature will be that the ground test verifi-
cation role will be replaced by analysis. Consequently, major emphasis must be placed
on the development of accurate analytical methods.

PROTOTYPE o FLcHT

NPPIETEC PRETARE:

3

. DESIGN MODEL MODEL FLIGHT

T

=5 ' 1 l

= T 1 1 : I

g3 VERIFICATION WORKMANSHIP

L ANALYSIS TESTS TESTS

2

L [BEVELOPMENT '

2.5 TESTS ANALYSIS

| DESIGN

N

».

50

5

a

= DESICN sl > FLIGHT

3

B ANALYSIS COR$§|§¢;|Nc

4

Iy DEVELOPAMENT

o TESTS ANALYSIS

&=

#a

-

i DESIGN

i ;

=4 :

= |

B THE FLIGHT CONFIGURATION WILL BE VERIFIED BY ;
Xy : -~ - ANALYSIS NOT TEST. f
: | g
g Figure 4 ;
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"~ ANALYSIS CONSIDERATIONS

The anaiytical cons:lde.rations-can be grouped in the areas of structural interactions

‘and complexity as indicated in Figure 5. The structural interactions can involve

motion-dependent forces caused by orbital rates, the control system, and soiar radia-
tion. All of these interactisns have been experienced by spacecraft. Spacecraft with
highly flexible gravity gradient rods exhibited destructive orbital interaction, and
the performance of other spacecraft was degraded by thermal "flutter." Structural
analysis complexities include FEM modeling of distributed mass systems requiring large
DOF or condensation, modeling adequacy for mechanism joints, inaccuracies arising from
normal mode analysis of structures having nonproportional damping, and analysis of non-
linear structures such as those using tensioning members. Comprehensive LSS analysis
will require complex models and use modified equations of motion that include inter-
actions.

® STRUCTURAL INTERACTIONS
- ORBITAL
- CONTROLS
- THERMAL

e STRUCTURAL COMPLEXITY
- DISTRIBUTED MASS
- MECHANISM MODELING
- DAMPING
- NONLINEARITIES

ANALYSIS WILL REQUIRE COMPLEX
MODELS WITH MODIFIED EQUATIONS

F::lgure 5

,.' A,f"d R e L . LEL SNEY Lo SO g 3 S R o .,' Fopo - IRSC P i N g LU, DO AR G N I S A FLmrs W . S

A} )

A . -~ T . » e -

ik, 3 o il 8
,



at
p)

LK A

ey
.

LS.

r, I.»". .
L,

BT |

-

,.I,I-_vu-,ld!_lllurﬂl (]

N bl

s il ol

U ¥} ll‘.'!

AN
AN XY N

Lol

L}
.

| L ul, '
Il.-l. JJ;R.'.:.‘. Dhalat

Cosilada Caae

ERCRME S Dt Soabt Pred S s #2505 i S i BTN AT e VAN I D L R L AT R T S AT ey ¥

L G 2N Vs

/.

A
L 9N

.'.'d'.

. "ANALYTICAL APPROACHES

BRI

" Analytical .approachea'whicl.:ﬂcéuld be used are outlined in Figufe 6. To evaluste in~

teractions, a combination of computer codes that treat each structural interaction in

.. detail and a comprehensive code that treats all interactions simultaneously appears

to provide a tractable approach. Specified codes would be used to support the struc-
tural design and would be more detailed, more readily implemented, and less expensive

. to run. The comprehensive analysis would build on the specialized design support

analyses and be used to verify the design. Attractive approaches to modeling of the
complex LSS configurations include substructuring, modal synthesis, and experimentally
based models. Modal models are attractive in that they provide frequency truncation.
An integrated modeling approach that considers experimental verification should be
used to maximize confidence in the analytical predictions. T :

e DEVELOP STRUCTURAL INTERACTION CODES
- ORBITAL
- THERMAL
- CONTROL
. - COMBINED :
e DEVELOP COMPLEX MODELS OF STRUCTURE
- SUBSTRUCTURE ANALYSIS
- MODAL SYNTHESIS
- EXPERIMENTALLY BASED MODELS

SPECIALIZED AND COMPREHENSIVE
ANALYSES USING MODAL MODELS
COMBINE TO PROVIDE A TRACTABLE
APPROACH

Figure 6
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"' TANDEM SPACECRAFT ANALYSIS AND TEST APPROACH

The analysis and test approach being used for a tandem-launched spacecraft is shown in
Figure 7 and illustrates a substructuring approach. The spacecraft are launched two at
a time with the one inverted relative to the other. The analytical model is assembled
from six substructures: two identical main bodies, four identical solar array stacks.
The modal test will provide solar array modes and main body mecdes that can be used to
synthesize the tandem spacecraft pair. One solar array stack was tested and two main
body tests will be performed. Residual mass and flexibility from the FEM will be used
with the test modes to assemble the spacecraft pair. Tests of a single solar array

and main body simplify the modal tests and reduce the amount of test hardware required.

LAUNCH CONFIGURATION MODAL SYNTHESIS MODAL TEST
ANALYSIS ARRANGEMENTS

| [IR\YAVAREI|
UPPER
SiC )
f i i
1 1Y
LOWER SIMULATOR
SIC
| UNOY U

STRUCTURE SYNTHESIZED
FROM 6 SUBSTRUCTURES STRUCTURE TESTED

USING TWO SUBSTRUCTURES

SOLAR ARRAY

POST TEST ANALYSIS USES
MEASURED MODES WITH
RESIDUAL MASS AND
STIFFNESS FROM FEM

Figure 7
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outlined in Figure 8. The first area is the development of
analytical codes that will enable accurate prediction of orbital dynamics behavior -in-
cluding structural interactions with orbital, thermal, and control excitations. As in-
dicated previously, specialized codes and a comprehensive code are suggested to sup-
pert spacecraft design and verify orbital performance. Ground and orbital test sub-
stantiation of the codes is an essential part of code development. Much of this

‘activity is currently planned or is in progress.

Because of. the increased reliance on analysis, it is essential that testing and methods
of using experimental data to enhance analysis accuracy be developed. Also, because
complete structures will probably not be ground tested, the development of methods for
using data generated with partial structures is essential. Specific items needing
regearch are (1) methods of using modal test data to improve FEM models, (2) methods

of correcting test data to eliminate ground test effects, (3) limits for ground tests
which assure adequate data for correlation with analysis, (4) methods of performing
modal tests (ground or orbital) when modal density is high, and (5) methods of analysis

and testing using substructures. Damping should be examined as a means of reducing
structural dynamic sensitivity. :

e ANALYTICAL CODE DEVELOPMENT

COMPREHENSIVE (STRUCTURE, ORBITAL, CONTROL, THERMAL).

SPECIALIZED (STRUCTURE-ORBITAL, STRUCTURE-CONTROL, ETC.)
TEST VERIFIED (GROUND, ORBITAL)

® ANALYSIS/TEST CORRELATION METHODS
e SUBSTRUCTURE ANALYSIS/TEST METHODS

e TEST METHODS

e DAMPING

Figure 8
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THERMAt ANALYSIS CONSIDERATIONS FOR
LARGE SPACE STRUCTURES

Howard M. Adelman and Charles P. Shore
© NASA Langley Research Center
Hampton, Virginia
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THERMAL-STRUCTURAL ANALYSIS CONSIDERATIONS FOR VARIGUS MISSIONS

Some of the aerospace vehicles which have been the subject of NASA research are
shown in figure 1. Each vehicle is associated with a different set of thermal
loading circumstinces. These circumstances determine the need for thermal-structural
analysis tools. The supersonic transport concept presented minimal analytical
difficulties, and it was found that existing analysis tools were adequate. The
hypersonic transport design included an actively cooled structure to dissipate high
heat loads of long duration. This configuration required analyses to account for
strong coupling amcng thermal, structural, and fluid behavior. Studies of this
vehicle led to the development of an integrated thermal-structural analysis approach
and integrated finite elements in which the temperatures and thermal input to the
structural analysis are computed together in a consistent manner (ref. 1). Thermal-
structural analysis cf the Space Shuttle orbiter during entry was probably the most
severe challenge to thermal-structural analysis techniques to date. Shuttle analysis
requirements led to research to implement faster transient techniques, improved
modeling methods, and use of advanced computer hardware (ref. 2). For large space
structures, the impact on thermal structural analysis methods appears to be a need
to efficiently handle radiation heat transfer effects including view factors, solar
flux, and shadowing. Additionally, prediction and control of the thermal deformations
of sensitive components such as antennas will influence both analysis and optimization
methods. :

HYPERSONIC TRANSPORT

COOLED STRUCTURE - TMEHMAUFLUID/STHUCTUR-E“
HIGHLY COUPLED LED TO INTEGRATED
FINITE ELEMENT ANALYSES

SPACE STRUCTURES

: o " WADIATION DOMINATED SHAPE CONTROL NEEDED
INTERPOLATION USED LED TO RESEARCH IN FASTER ' S e e
ALGORITHMS, USE OF ADVANCED COMPUTERS, ETC. : -

" ) ".\ ._-‘ ) o Figure 1
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- BASIC PROBLEM IN THERMAL-STRUCTURAL ANALYSIS

.~ Much of the recent Langley research in thermal-structural analysis methods was
motivated by problems encountered in the design of the Space Shuttle orbiter (fig.
2) for which. it was necessary to have knowledge of the histories of temperature and
thermal stress due to the time-dependent reentry aerodynamic heating. The straight-
forward approach would be to use a finite element and/or lumped-parameter model of
large sections or complete components of the vehicle structure. However, due to the

- shear size of the required model and the high cost and long computer run times, it

PR ¥ [ SR I

was necessary to model small portions of the structure, fndicated in black, and
interpolate results to obtain temperatures in the unmodeled (white) portions of the
orbiter. About 90 percent. of the temperatures used fn stress calculations were
obtained by interpolation. There was some uncertainty and uneasiness associated
with the use of interpolation. Examination of analysis requirements indicated that
certain complicating factors listed on the figure were primarily responsible for the
excessive resources requirea for the analysis. Research described in reference 2
was motivated by the need to reduce the resources associated with the cited factors.

® LOCAL 3-D PLUG
MODEL ~ 200 dof 4. =

> = .
A

REENTRY RENT
HEATING CUR \
EATIN MODELING - =]
oF 'MDE , AND ANALYSIS | ~.
PENDENT PRACTICE NOT MODELED
INTERPOLATION
U BETTER MODELING AND USED
ANALYS!S PRACTICE
COMPLICATING FACTORS
e | e B
REQUIRED FOR
® RADIATION ANALYSIS!

. Figure 2
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.~ ASPECTS OF THERMAL ANALYSIS OF LARGE SPACE STRUCTURES
As a guide to subsequent discussions of research dpportunities in thermal-
structural analysis of large space structures, figure 3 depicts various aspects of
- the analysis. Key areas of analytical deficiencies include efficient view factor
. and flux calculations and proper accounting for interactions. Twc important
interactions cited are the need to simultaneously monitor and control the

temperature distribution and shape of flexible orbiting structures such as antennas

and the need to account for the coupling between thermal deformations and radiation
view factors in flexible structures. .

APPLIED HEAT FLUX/
INTERELEMENT BADIATIDN.

THERMAL RESPONSE
(TEMPERATURES)

MANAGEMENT

Figure 3
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" 'MOTIVATING QUESTIONS AND ISSUES

"Previcus experience in thermal-structural an'alysis activitiies. for aircraft and =

space transportation vehicle structures suggests that in thermal-structural analyrcis
of large space structures (including space stations), a number of critical questions
and issues tend to guide research. As indicated in figure 4, computer time and cost
are important factors. Consequently, improved solution methods (algorithms) and use
of simplified analysis and modeling techniques, such as isothermal finite elements,
are of interest. The roles of advanced computer hardware, such as finteractive
minicomputers and super mainframes, need to be assessed by comparative analyses.

Two issues are cited: (1) the need exists to demonstrate new promising analysis tools
on real problems of sufficient size and complexity to ensure that good performance is
not restricted to small academic problems; and (2) a certain dichotomy exists,
namely, much ot the research is carried out in the integrated thermal-structural
finite element context while much practical thermal analysis uses lumped-parameter
methods. Significantly more dialogue between the two communities is needed to

ensure that needed and usable research is being carried out.

QUESTIONS
HOW CAN WE OVERCOME EXCESSIVE REQUIREMENTS OF COMPUTER
TIME AND COST FOR THERMAL ANALYSIS OF LSS ? °
HOW DETAILED MUST ANALYSES AND MODELING BE FOR ACCEPTABLE
RESULTS?
WHAT S THE ROLE OF ADVANCED COMPUTER HARDWARE?

ISSUES
NEED TO DEMONSTRATE TECHNIQUES ON REAL PROBLEMS IN ORDER
TO ASSURE CREDIBILITY.
NEED FINITE ELEMENT - LUMPED-PARAMETER DIALOGUE
Fiqure 4
B
TR T ~- P O LN
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_ -Ei_;fﬁoTi_&Anou_ FOR USING FINITE ELEMENTS |

~_ Recent thermal -stfuctura] research activities at Langley have been based on
finite element analyses (fig. 5). The primary consideration for using finite
element methods has been the need for integrated thermal-structural analysis and

optimization of heated structures. Use of finite elements permits a high degree of
compatibility between thermal and structural models and avoids the cumbersome data

" transfer often required between lumped-parameter grids for temperatures and finite

elemeat grids for thermal stress analyses. Further, the graphics available in
finite element codes permit rapid model checking and verification. The SPAR finite
element computer program is used extensively at Langley for both thermal and

... structural analyses. It is a production level program with.a modular configuration.
‘'which gives a high degree of flexibility in terms of processor execution sequence.

The modularity and the flexibility also enhance the program for interactive computing.
Because of these features, SPAR is utilized as a test bed for implementation of new
methods at Langley. -

® THERMAL-STRUCTURAL INTEGRATED ANALYSES
® COMPATIBILITY
@ EASE OF DATA TRANSFER

® MODEL VERIFICATION AND CHECKING

SPAR PROGRAM USED AT LANGLEY
* INTERACTIVE MODE
» FLEXIBLE AND MODULAR
o TEST-BED FOR NEW METHODS
* PRODUCTION LEVEL PROGRAM

Figure 5
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":Zi" DEVELOPMENT. OF THERMAL-STRUCTURAL ANALYSIS METHODOLOGY

The Langley_apbrbach to improved thermal-structural analysis methodology
consists of several parts (fig. 6). To begin, needs are identified from various
sources including industry and academic contacts and from working aircraft and

- spacecraft problems. Once a need has been identified, ideas are conceived to

satisfy the need, and the methodology is developed to implement these ideas. The
methodology 1s then evaluated on small well-defined problems in study computer
codes. After the methodology reaches sufficient maturity, it is installed in SPAR
and exercised on sufficiently complicated problems to demonstrate the benefits
derived from the new methodology. An example of this apprnach is the recent
addition to SPAR of the GEARIB set of solution algorithms as described in reference
2. When the new methodology is independent of the analysis method (i.e., finite

element or lumped parameter) it should also be useful in lumped~parameter programs,
such as MITAS or SINDA.

_ OVERALL APPROACH
IDENTIFY §
NEED \
DEVELCPI IDENTIFY EVA!UATE
BETTER ! WITH STUDY INSTALL IN SPAR
METHC20LOGY CODES EXERCISE ON BIG PROBLEMS
< !
N\
) N,
N\
CONCEIVE / )
IDEA . INSTALL IN MITAS/SINDA
EXCERCISE ON BIG PROBLEMS

Figure 6

-
N

-
'l

KR} Sl O  SORE-£:4 -

2 tals 5

R I L o R
SRV o AR

-
(YXIN

. '."!'-1"4"-""."}".".'.'-'.".'.:-'l'“".

»
..

~y

el
o LS

=%

Ty

"y

o,
e

”~ .pr - o ..
el T e
b Y WOF L . PR AT

essnt ogepmive s
LR .I.!.". L
PR R FE R S

.'r-
YR

ST

ST S TS S T SR B SR Y S
Ly . . .

/‘



Ca
e e i S

% .7 ELEMENTS OF RESEARCH PROGRAM FOR THERMAL ANALYSIS AND OPTIMIZATION .~ w:iitsliig |

- The 1ist of research tasks shown in figure 7, apart from the division into ... - .. .-
analysis and optimization, falls into three categories: (1) items which are generic .
and ongoing (solution methods for transient temperatures, integrated analysis o~
methods, evaluation of advanced computer hardware, sensitivity analysis, and
thermal-structural optimization); (2) items which are ongoing but will receive
increased attention because of their importance to large space structures -
(approximate analysis techniques, improved radiation analysis); and (3) new areas of
work (finite element modeling and analysis techniques for heat pipes).

ANALYSIS
® SOLUTION METHODS FOR TRANSIENT TEMPERATURES
©® |[NTEGRATED ANALYSIS METHODS
® APPROXIMATE ANALYSIS TECHNIQUES
® IMPROVED RADIATION ANALYSIS

<

® EVALUATION OF ADVANCED COMPUTER HARDWARE
@ MODELING TECHNIQUES FOR HEAT P{PES

OPTIMIZATION
® SENSITIVITY ANALYSIS
® THERMAL-STRUCTURAL OPTIMIZATION -

Figure 7




TRANSIENT THERMAL ANALYSIS TIME REDUCED BY IMPROVED SOLUTION METHOD
One important element of the Langley research program has been the implementa-

tion and verification of efficient solution algorithms. A promising set of impTicit
algorithms denoted GEARIB has been installed in SPAR. The desirable feature of the
GEARIB technique is the ability to adaptively vary the step size throughout the
-temperature history. As indicated in figure 8, various algorithms were used to
trace the 3500-second temperature history in a section of the Shuttle orbiter wing.
Two models were considered: a two-dimensional section through the wing depth and a
one-dimenstional plug through the center of the two-dimensional model. Calculations
for each model were carried out using explicit Euler and implicit backward differences
as well as GEARIB. The explicit algorithm is burdened by the need to take small time
- steps (i.e., 0.1 seconds) to avoid numerical instability. The backward differences

algorithm uses a larger but fixed time step of 1.0 second (determined by accuracy
considerations). The GEARIB algorithm, by adaptively changing its time step to as
much as 218 seconds, obtained solutions with significantly less computer time than
the two previous methods. Additional results (not shown) were obtained using a
lumped-parameter thermal analyzer (MITAS) and indicated that for consistent models,
solution methods, and accuracy levels, SPAR and MITAS solution times are comparable.
Thus, it is expected that use of GEARIB in this type of analyzer would lead to
efficiency improvements similar to those obtained in the finite element program.

HOLLOW ] |- WING COVER + INSULATION
INTERIOR = _H{

—
112D SECTICN THROUGH WING
{NOT T0 SCALE)

10 PLUG \
MODEL

SOLUTION TIMES® FOR 3500 s TEMPERATURE HISTORY

MODEL 1D PLUG 20 SECTION
METHOD — TIME STEP | SOLUTION TIME | TIME STEP | SOLUTION TIME
EULER-EXPLICIT 0.1 1723 01 3205
BACKWARD DIFFERENCES-

IMPLICIT FIXED TIME step| 10 256 1.0 1145
GEARIB-IMPLICIT

VARIABLE TIME STEP 0.85-218 63 0.1-225 245
' “*ALL TIMES IN SECONDS

B .Figure'ﬂ
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0 REDUCED-BASIS METHOD FOR TRANSIENT THERMAL ANALYSIS - |

Along with implementing improved solution algorithms such as GEARIB, work has
been initfated to develop approximate analysis techniques which have potential for
significant reductions in solution effort. One such method is the reduced-basis
technique which combines the classical Rayleigh-Ritz approximation with contemporary
finite element methods to retain modeling versatility as the degrees of freedom are
reduced (raf. 3). The effectiveness of the method depends upon representation of
local temperatures by a few modes or basis vectors. The reduced-basis technique has
been successfully applied to the problem illustrated in figure 9. This problem
represents a 58-in. segment of the lovier surface of the Space Shuttle wing and
consists of a 119-mil.-thick aluminum skin covered by 1 in. of fnsulation. The
combined structure was modeled with two-dimensional, finite elements with 84 node
points (84 degrees of freedom). A heat pulse reasonably representative of Shuttle
reentry was applied to the surface and produced temperatures where radiation becomes
appreciable. Additionally, the thermal properties of the insulation are nonlinear
functions of temperature and ambient pressure so that the heat transfer equations
are highly nonlinear. A total of 23 thermal mode shapes were selected from
solutions of two thermal efgenvalue problems: the first based on material
properties evaluated for uniform temperatures of 560°R, and the second based on
temperatures from a steady-state problem with averaged heating and thermal
properties. The resulting temperatures are compared with temperatures obtained from
2 SPAR thermal analyzer solution of the full system of 84 equations. The
temperature nistories shown on the figure agree very well and indicate that the
reduced-basis technique can approximate temperatures from the full system within
20°R over the. entire heat pu'ze. Efforts are continuing to find the minimum number
of basis vectors for acceptable temperatures and to demonstrate the technique for
larger problems.

SURFACE HEATING PROFILE
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ORBITING - TRUSS SPACE STRUCTURE FOR TESTING IN;I’EékATED FINITE ELEMENTS
'Deve'lopmeht of integrated ffnite elements has fecently bee'n- focuséd on elements
- with radiation heat transfer (ref. 4). The next three figures reproduced from
reference 4 describe some recent results from that work. The test problem for

evaluating the integrated elesents is shown ‘in figure 10. A tkree-member module of
‘an orbiting space truss is shown. A typical truss member receives solar, Earth-

. emitted and Earth-reflected heating and emits thermal energy to space. In a

O Ll L LR

LI T
Lt A

v . | [ .1
B RO LT FR LRI LR IR TR (R ETRR

" geosynchronous orbit, solar heating predominates. . Incident normal flux to a truss
member varies significantly as a member changes orientation with respect to the
solar flux vector. As the orbiting structure enters and emerges from the Earth's
shadow, significant changes in incidert heating occur., Member temperatures and
structural deformations depend strongly on the time-dependent heating and member
material and surface properties. _— ' -
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© COMPARATIVE: TEMPERATURE DISTRIBUTION OF A THREE-MEMBER ORBITING TRUSS

. . - o L . H

- . Temperature distributions from conventional and integrated finite elements for 4

the three-member truss are shown in figure 11 for a typical orbital position of the :

truss space structure. The term integrated element refers to a thermal element :

‘formulation using a nodeless variable to obtain a quadratic temperature variation in ‘

a two-node element so that accurate thermal forces may be obtained for thermal H
stress analyses using two-node structural elements. Solutions were obtained for t .

models using a single conventional and a single integrated finite element to : h

represent each truss member. A solution using 10 conventional elements per member s

is used as a baseline for comparing conventional finite elements with integrated i

finite elements. The conventional elements did not- give a good representation of i

interior member temperatures. The nodeless variable elements predicted member H

temperature distributions and nodal temperatures very accurately with small H

deviations from the reference solution. :
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~ - COMPARATIYE DISPLACEMENTS OF ‘A THREE-MEMBER ORBITING- TRUSS
Histories of a typical member elongation for one orbit are compared for the

various finite element models (fig. 12). The member elongation as computed from the
one element per member conventional model temperature distributions show up to 44
percent- deviation from the reference solution. These discrepancies arise because
the linear cemperature distributions predicted by the conventional elements give a
poor representation of the averac> member temperature. Since the nodeless variable
= elements represent temperature d!.tributions very accurately, the elongation

x. predicted from these temperatures shows excellent agreement with the reference
solution with the largest discrel..ncy less than 1 percent. co
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27" CHARACTERISTICS OF ISOTHERMAL TRUSS ELEMENT

Althohgh the ratheflrigdfous 1htegrated elements dfscussedlin the previous
figure are in the research stage and hold promise for future applications, less

_ rigorous state-of-the-art analysis procedures are being applied which employ

engineering assumptions. For example, several modeling simplifications are often

“utilized in thermal analysis of space trusses {ref. 5). For finite element analysis

of space trusses, the simplifications are embodied in the isothermal truss element
(fig. '13). The isothermal element neglects conduction, radiation exchange with
other elements, and interelement shadowing. The element temperature is determined
by a balance of radiation heat transfer between solar and Earth-reflected (albedo)
energy and radiation from the element to space. The figure typifies the temperature
distributions obtained with the isothermal element. Teaperatures around the :
triangular substructure of the orbiting truss are compared. The exact temperature
distribution is given by the piecewise linear representation. The isothermal
elements obtain good overall element temperatures but miss the details near the ends
of the element. Consequently, use of isothermal elements can be useful for overall
temperature distributions and deformations but would not be expected to be
sufficient for detailed deflections or stresses, particularly at the joints between

trusses.
y s
s O ENERGY
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N7 HEATING
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CSSKETS72> | @ CHARACTERISTICS
N\ e v/
N7+ NEGLECTS CONDUCTION, INTERELEMENT
z RADIATION AND INTERELEMENT SHADOWING
* GOOD AVERAGE MEMBER TEMPERATURES
* PERMITS SIGNIFICANT MODEL SIZE REDUCTION
« MISSES DETAILED DISTRIBUTIONS
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" EVALUATION OF APPROXIMATE THERMAL MODELING
. - .- AND ANALYSIS TECHNIQUES FOR SPACE TRUSSES

As. indicated previously, thermal analyses of space trusses have often relied on

- simplifying assumptions associated with the isothermal element concept. As
indicated in figure 14, there is a need to evaluate the errors associated with a
number of simplifications including the neglect of conduction, interelement
radiation and shadowing as well as the use of quasi-steady analyses {neglect of
transient effects). In addition, two approximate analysis techniques will be
evaluated: namely, the reduced-basis method (fig. 9 and ref. 3) and a thermal modal
decomposition method. The test problem being used for the first set of evaluations
is a truss model obtained from reference 5.

@ APPROXIMATIONS TO BE EVALUATED
* MODELING APPROXIMATIONS

* NEGLECT CONDUCTION

* NEGLECT INTERELEMENT RADIATION
» NEGLECT INTERELEMENT SHADOWING
* [SOTHERMAL ELEMENTS

@ ANALYSIS APPROXIMATIONS
« REDUCED-BASIS METHOD
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XX XX XX XX XX XX
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“'-" LONG DURATION EXPOSURE FACILITY RADIATION THERMAL ANALYSIS
: Along with manf'of the hdmb]fcating-factors agsoéféted with the tﬁermal
- analysis of the Shuttle orbiter (fig. 2), radiation heat transfer effects have a

large impact on analysis needs for large space structures. Recent experiences at
Langley in computing view factors for a future Shuttle payload demonstrate the need

ey

for efficient calculations of radiation view factors.
Facility (LDEF) is depicted in figure 15.
occluding surfaces, and required 60,000 view factors.

Y B R R R A

The Long Duration Exposure

Thermal analysis of this

The model shown included 440 panels and 124

structure required 32 hours of CPU time using an in-house developed computer program

on a CDC 6600 computer and indicates that radiation analysis of large space

stuctures such as a space station is likely to severely strain current techniques.

The results of this analysis along with other similar experiences for Shuttle :
;- components suggest the need to take a look at more efficient programs such as TRASYS
. {ref. 6) and to attempt to improve techniques used for radiation analycis.
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ST -7 RADIATION THERMAL ANALYSIS RESEARCH =~ I r'/ |
" -Since complex space statfon geometry and heating-induced geometry changes will = i\

" . strongly -influence radiation heating and interelement radiation exchange, improved
methods for calculating view factors and heat fluxes are needed. The TRASYS program X
" has undergone significant upgrading as described in reference 7 and will be : AN
.evaluated. This program is used extensively at Johnson Space Center for Shuttle and %
~ spacucraft applications. Langley is also developing improved radfation capability \

.under a2 grant with the University of Washington. As indicated in figure 16, 7'_"3-\1 ] A
{mproved numerical and code capabilities will be demonstrated in a study code and . TN Y
“will include such effects as shadowing,. reflections, reradiation, adiabatic I '..:_3.‘ %
surfaces, planes of symmetry, solar flux, and penumbral effects. Techniques PR\ "\"{"“
currently being considered to improve efficiency are double area integration, R A NS

- contour integration, and Monte Carlo methods. After the fmproved capabilities have ' . N \.\

- been demonstrated for small problems, the SPAR thermal analyzer will be updated to BRE] -,\ v
include the improvements. The goal is to develop in SPAR the capability to compute ;-".3'\,\.\_1 :
radiation view factors and fluxes, then temperatures and deformations, and finally SN

feed those deformaticns back to the view factor calculation to obtain the view #a
factors for the deformed structure. Results from part of this effort may also be
incorporated in lumped-parameter thermal analyzers, and some products of the research
could be incorporated in TRASYS or TRASYS-type programs.

® OBJECTIVE
* IMPROVE EFFICIENCY TO CALCULATE VIEW FACTORS AND FLUXES

® APPROACH

DEVELOP IMPROVED NUMERICAL AND CODE CAPABILITIES S
DEMONSTRATE WITH STUDY CODE FINT
INCLUDE SHADOWING, REFLECTIONS, RERADIATION, ADIABATIC
SURFACES, PLANES OF SYMMETRY, SOLAR FLUX, PENUMBRAL
EFFECTS ‘
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® TECHNIQUES

* DOUBLE AREA INTEGRATION
CONTOUR INTEGRATION
* MONTE CARLO
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® RESULTS | __j
* EFFICIENT NUMER ICAL AND COMPUTER TECHNIQUES S VAS
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ROLE OF ADVANCED COHPUTER HARDHARE

Discussions mvo'lving advanced computer hardware at a recent NASA symposium,

- Computational Aspects of Heat Transfer in Structures (ref. 2), brought out several

. observations ‘on the role of advanced computer hardware (fig. 17). Significant
reductions in run times were achieved for the unmodified SPAR thermal analyzer on a
CYBER 203 and for SINDA on the CRAY. The discussions also indicated that the effort
_required to restructure (vectorize) large operational codes to take full advantage of
vector processing requires such a large personnel investment that it is not gererally
cost effective. There might be justification for building a vectorized program from
the beginning provided the community of potential users was significant. Benefits
mentioned for minicomputers were their interactive capability and virtual memory which
permits solution of large problems. Benefits mentioned for the supercomputers were
their large in-core capacity which permits rapid solution of extremely large problems.

@ SIGNIFICANT REDUCTION IN RUN TIME ACHIEVED (SPAR ON
CYBER-203, SINDA ON CRAY)

@ RESTRUCTURING PROGRAMS FOR VECTOR COMPUTERS NOT
¢ COST EFFECTIVE c . = ‘
® BENEFITS FROM MINIS (INTERACTIVE, VIRTUAL MEMORY)

® BENEFITS FROM SUPER COMPUTERS (LARGE CAPACITY)

Figure 17
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, One of the early examples used to evaluate finite element thermal analysis on
the CYBER 203 computer was the antenna structure shown in figure 18, :
-fairly small model, containing only 55 grid points and 183 elements, but did have the
. complexities of interelement radiatfon and shadowing.
performed for one aeosynchronous orbit and solution times on the CYBER 175 and

The 3l=percent savings of computer time was
considered significant but not entirely satisfying since greater savings had been
anticipated. It was decided that since the program operated in the scalar mode and

CYBER 203 computers were compared.

O THERAL ANAL

Ysis

BT RS

OF 30-METER PRECISION DEPLOYABLE ANTENNA

LA T E T o

This was a

A transient analysis was

the program had not been restructured to take better advantage of the vector

processing capability of the CYBER 203, the time saving was as much as could be
expected. This reasoning, however, led to a subsequent task of performing some
vectorized programming to assess the benefit of vector processing by the CYBER 203.

T

SOLUTION TIME™ sec

CYBER 175

CYBER 203

46.4

32.1

* SCALAR MODE

® 55 GRID POINTS

® 183 ELEMENTS

® |NTERELEMENT RADIATION

® TIMZ-DEPENDENT SHADOWING

® TEMPERATURE HISTORY FOR 24 HOURS
DT =.01 hr

M

o

* Figure 18

TEMPERATURE HISTORY




" 'IMPACT. OF VECTORIZATION ON SOLUTION TIME ASSESSED -

A pilot program was written to determine thé benefits of the vector processing:

‘capability of the CYBER 203, The program solves for the transient temperaturass in

an insulated cylinder modeled with SPAR solid thermal elements. Figure 19 shous the
vectorization stages that have been completed. The CYBER 203 run time in the scclar

. mode is shown in the first line of the table. The next entry displays the benefits

from obvious conversions of DO loops to explicit vector calls and the v:ctorization
of scaling the alement conductivity matrices. The subroutines which factor and
solve the symmetric banded system of equations were replaced by a vectorized

. subroutine from the CYBER 203 system math library. The answers produced were

jdentical, and the tiwe required for this operation was cut by almost two-thirds.
The library routine uses a vector length of half the bandwidth plus one. For the
insulated cylinder model this was 26. A larger bandwidth would produce more savings
here. The single most time-consuming operation is the multiplication of the
conductivity matrix, denoted K, by the temperature vector, denoted by T. The
reprogramming of this operation so that relatively long vectors were operated on
(ref. 8) was responsible for the largest time savings and brought the total solution
time down to 33 seconds, a reduction to nearly one-third the original solution time.

PROBLEM: 1000 sec TEMPERATURE HISTORY OF 800 NODE CYLINDER, DT= 2.0 sec

“ ¢

LEVEL OF VECTORIZATION cPy

ORIGINAL - NO VECTORIZATION 92

EXPLICIT VECTOR CALLS FOR 85
O0BVIOUS LOOPS AND SCALING

VECTORIZED ROUTINE FOR
SOLUT!ON OF EQUATIONS 65 REGION OF
(MATH LIBRARY ROUTINE) APPLIED HEATING

VECTORIZED K T OPERATION 33

"Figure 19
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PROPOSED APPLICATIONS OF HEAT PIPES TO AEROSPACE' STRUCTURES .

. The use of heat pipes for reducing temperature gradients and the associated
deformations and stresses has been proposed for a number of applications (fig. 20)
such as a heat-pipe-cooled leading edge for the Shuttle Orbiter wing {ref. 9) and
2 heat pipe sandwich panel radiator concept for the orbiter payload bay doors. For
- large space-antennas, a heat pipe sandwich panel has been proposed for the reflector
structure (ref. 10). Finally, heat pipes have been proposed for thermal management
on space station concepts (ref. 11). These proposed applications lead to the question

of whether existing capability is adequate to handle detailed analyses of heat pipe
thermal performance. - _ L . :
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CONSTRAINT TRACKING FOR TRANSIENT THERMAL RESPONSE

An important aspect of space structure amalytical design will be the
requirement that time-dependent temperatures and stresses be less than specified
allowable values (constraints) for all appropriate values of time for all orbits. -

. The traditional approach for such problems has been to calculate response quantities '

for a few "time slices” and design the structure so that constraints are satisfied
for each time slice (fig. 21). An extension of this approach called “discrete
times" calculates response quantities at many discrete times which span the time

- domain (ref. 12). The response for each discrete time is treated as a separate

constraint and the structure is designed to satisfy all the constraints. For the
example shown, two such constraints are not satisfied and the structure must be
resized. A third method to handle time-dependent constraints known as the "critical
times"™ method is to calculate times when the largest response for a given design
occurs, size to satisfy the constraints for those times, and per1od1ca]1y update the
critical times as the optimization proceeds (ref. 13}.

APPROACH DESCRIPTION

® USUAL TIME SLICING CALCULATE RESPONSE AT DISCRETE TIMES

TREAT EACH AS A LOAD CASE
DESIGN TO SURVIVE EACH LOAD CASE

® DISCRETE TIMES METHOD  ° CALCULATE RESPONSE AT DISCRETE TIMES
(ref. 12) TREAT RESPONSE AT EACH TIME AS A CONSTRAINT
SIZETO SATISFY ALL CONSTRAINTS

® PREDICTED CRITICALTIMES  CALCULATE TIME (S ) WHEN LARGEST RESPONSES
METHOD OCCUR

{ref, 13) SIZE TO SURVIVE AT THOSE TIMES

TIMt WHERE CONSTRAINT 1S
MONITORED (TYPICAL)

= — —ALLOWA
RESPONSE BLE VALUE

. TIME .
’ f DESCRETE TIMES MEI'HOD

Figure 21
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" OPTIMUM DESIGN FOR THRMAL DISTORTION CONSTRAINTS

_ ‘Large flexfble space siructures sur.:

by the Space Telescope (fij.

constraints -on temperatures, temperature gradients,

~example, part of the optical control system in the Space Telescope is permitted no

as antennas and optical systems typified
22) require the consideration of extremely tight

and thermal deformations. For

more than a 0.0005°F temperature difference over an 18-inch span. Typical methods
for controlling temperstures and deformations in the telescope include the use of
thermal coatings and heaters. A contractual effort is being initiated with the
Perkin-Elmer Corporation to adapt mathematical optimization procedures to the
problem of automatically selecting parameters such as coating locations, heater
locations, and sizes to meet specified tolerances on the deformations and
temperatures of orbiting structures. This effort will build on the work of the
principal investigator's doctorai dissertation (ref. 14) which has already been used
to influence design procedures for the Space Telescope. As part of this work,

thermal analysis techniques will be modified as required to assure that the high
precision needed in computed temperatures is achieved.
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. This paper has intended to discuss a number of issues and needs relative to
thermal analysis of large space structures and space stations (fig. 23). Some
indfcations of trends in the Langley thermal-structural analysis research program
T consistent with the issues and needs are also presented. The main heat transfer
i! ' mechanism in space is radiation; consequently, there is a need for a strong thrust
= ' on improved radiation analysis capability. Also the important interactions among
temperatures, deformations, and controls need to be accounted for. Finite element
analysis capability seems to be lagging behind lumped-parameter capability for heat
pipe analysis. Briefly, the Langley plan will include improving radiation analysis
3 - capability, evaluating the errors involved in certain approximate analysis and
ii : modeling techniques for large space trusses, and continuing the development of
integrated thermal-structural finite elements with an emphasis on radiation heat
o transfer. Work will be initiated to develop finite element analysis techniques for
heat pipes. Finally, optimization research activities will be oriented toward
methods to design flexible orbiting structures to account for thermal and thermal-
deformation requirements.

A

® THERMAL ANALYSIS NEEDS OF LSS PRESENT RESEARCH OPPORTUNITIES:

o

lan JE 1
ptang
.‘-."l

» INTERACTIONS: TEMPS, DEFORMATION, CONTROLS, ETC.
» HEAT-PIPE MODELING, ANALYSIS, OPTIMIZATION

© PLANS i

* ORIENT THERMAL-STRUCTUAL ANALYSIS ACTIVITY TO LSS
* MAJOR THRUST ON RADIATION ANALYSIS IN SPAR ‘
 EVALUATE STMPLIFIED MODELING AND ANALYSIS TECHNIQUES
» CONTINUE INTEGRATED FINITE ELEMENT DEVELOPMENT
« INITIATE FE HEAT-P IPE MODELING AND ANALYSIS RESEARCH

_ »°' INITIATE OPTIMIZATION APPLICATIONS TO LSS

" Figure 23
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", In feedback control problems 1t has tecently been established that there is

an optimum controller order for a given missfon (set of control objectives) [1].

. The conclusion is that it is possible to make the model too simple (something every=
one knows), and it s possible to make the model too complex! The engineering expla-
nation for this phenomenon is that models of too low order have large effects from
errors in model order, whereas models of too high order have large effects from
errors in parameters. One might think that parameter identification methods could

" be added to remove this latter difficulty. But, alas, it is well known in identifica-
tion theory [2]-[9] that overparameterization actually degrades the performance
(convergence) of the identification algorithms. Hence, further research is needed
to determine methods to find the optimuwm controller complexity (controller order and

- controller parameterization). That is, the modeling problem and the control problem

must be united within some integrated systematic approach.

- The method currently under investigation for accomplishing this is component
cost analysis {1]. Component cost analysis determines the critical components in a
dynamic system, and varied applications of these concepts lead to an algorithm which

integrates the follcwing design problems.

‘® Which components of the system structure should be redesigned and what

parameters of the redesign are important to change?

® Which sensors and actuators should be redesigned; where should the

sensors and actuators be located; what type of sensors and actuators

should be used?
@ Which parameters will be most critical to identify?

@ What controller order and dssociated -optimm controller bandwidih is optimum?

® What sample rate should be selected for digital control?

1.0 INTRODUCTION

Flexible structures and their dynamics have been studied for over a century.
However, only receuntly has there been an interest in the active control of flexible
structures. Such interest was piqued in the 1960's by a flexibility-induced insta-
bility in the USA's first satellite [10) and, more recently, by sophisticated require-

ments for precision-controlled structures in space for astronomy, communication

networks, near—-Earth scientific studies, and space solar-power alternatives [1l1].
The rapid development of computers and control theory im the 1960's has encouraged
active control applications for other structures as well, such as flutter suppression

in aircraft [12], and active damping of bridges and tall buildings [13].

not to say that active control is needed In every structure, however, and there is
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no clear way to make the decision of when and how much control effort is needed in ?: -

a structure, There is a need to study the dynamical properties of the mechanical

system with a view toward discerning what improvements in performance can easily be ;.\\
made by redesigning the structure and what improvements must be left for active con- 40N

trol functions. This beneficial interaction of the dynamics and control disciplines _;
in the development of a rotational design methodology has not yet occurred to any o4

mature degree. Usually the structure designs and the control designs occur sequen- o -

.and controller software design.

.." " Some of the reasons that the control of flexible sprcecraft can be a difficult -]
‘task are briefly described by the following three problens. 3.

= ’A.u. rh:) .'!.-._,-"-'.--': o :\...y_

- tially. This luxury cannot be afforded in the future. Stringent requirements J
. force us to provide better coordination between structure design, control design, -
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" (1) The Model Error Problem -
- The space structure is usually constructed of lightweight materfals, and thus

the assembled structure is very lightly damped. This uniqueness of light damping
for the space structure makes the control design extremely sensitive to modeling
-errors, since the slightest perturbation of truncated modes by control action can
shift these eigenvalues into the right half-plane. Also there is the usual uncer-
tainty in the computation of the modal data. This problem is especially critical
for spacecraft since modal data uncertainties cannot be removed before flight,- due
to the difficulty of testing the extremely lightweight structure in a l-g environ-
' ment., : - _ . C . - :

. - (11) The Linited Cohtroilet Software Problem

- V" The practical limitations of memory and speed of onboard computers mean that
only controllers of constrained dimension can be considered. These constraints can
severely reduce the performance capabilities of the controlled system due again to
the effect of modeling errors imposed by the controller order constraints. (An
infinite dimensional system controlled by finite controllers immediately suggests
that the standard "optimal" state feedback solutions are not going to be realized).
Thus, limited software serves only to compound the model error problem by constrain-
ing the order of the controller and by adding delays in the feedback loop.

~(411) The Performance Requirement Problem

Of course the model error problem and the limitations of software pose no seri-
ous threat to the mission if the performance requirements are quite lenient. Thus,

the degree to which (i) and ‘(1i) pose problems is directly related to the severity
of the performance requirements. Therefore, early research on the subject sought
to help with the trade-offs between performance and modeling errors (including those
induced by controller software limitations).

2.0 MODELS OF SPACE STRUCTURES

Those portions of the structure resembling beams, plates, and membranes might
reasonably be idealized as a material continuum. The resulting partial differential
equations (PDEs) contain all the modal data over an infinite spectrum [14]. other
parts of the structure might contain trusses or complicated connections which re-
quire a finite element formulation of the model, resulting in a set of ordinary
differential equations (ODEs) [15]-[17]. Also, the dynamics of actuators and sen-
sors are usually described by ODEs. This combination of distributed-parameter models
(PDEs) and lumped-parameter models (ODEs) must eventually be reduced to a finite
set of ODEs. The discretization of the PDEs must be accomplished so that the fre-
quency spectrum over which each of the subsystems (actuators, sensors, substructure
1, substructure 2, etc.) are modeled is consistent. Otherwise, troublesome dynamical
interactions between subsystems might be unintentionally concealed at the outset.
Thus, each of the substructure models might be truncated prior to the assembly of
the composite model (2.1).

"ga + c|a + G".l"-l- K.q = Bt.ua
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cXy = AX, + Bu+ W,

S ~_actuators, Sa"y IR o '_ (2.1b)
Uy = Cy¥y ¥y | |

»xe
f

- +By+
Agxg + BoY + W,

- gensors, S (2.-1c5

+
2 csxs. v

. vhere the inertia or “mags" trii M' = M'T>0 is positive, definite, and symmetric;

the stiffness matrix K' = K'! > 0 is positive, semidefinite, and symmetric; the inter-
nal energy dissipation due to damping is qTC'q and C' = C'T > 0 is_positive, semi-
definite, and symmetric; and any gyroscopic term is due to G'= G'T, which is skew-

symmetvic. The disturbance models assumed for wa, Va, ws, v are all zero-mean white

m
noise procegses. The dimensions of the vector are X_c¢ RS. Xy € Ra, q eRN. v, eR @,
ueR" YeR Y, ze R'Z, The coordinate transformation

q= Tn . _ 5 _ : (2.2a)
is often made to put the structural subsystem SSTR in the coordinates
o A .
ReZptZn=Bi, , BETE, Z,=TKT , ;477 + 6T (@2
n : A A ) .
y= . » P=7PT, R =R'T ’ (2.2¢)
R

Let the first n_ elements of q and n be associated with rigid-body (zero frequency)
modes of the structure. Then these matrix partitions apply

2, 8 TK'T & block atag  [06%] , o? 2 dtag [ufs .oos oj] = T KT, (2.20)

TWT =1, T=[T, T, TC'T = block dtag [04], 220 (2.2¢)
1 '] T — T T -
T rr Gre n. = [n, "e] , R =[R, R,
T'6'T = , _ : o 2.2f)
[ ] [ ] - T -
Ger Gee Pp= [Pr pe:I ’ B = [Br Be]

T

. where the zero in (2.2e) holds if the rigid modes are undamped, and G".r = =Gy »

Gér ‘Gér . Gee Gee . No?_(.2‘72) becomes
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3.0 ON THE STRUCTURE OF MODELING ERRORS

Let the éomposite model (2.1) be written in state form

- '_' A
x=Ax+ButDwtf, X =L AL, ), |
' . s XER , N = 2n_+a+s (3.1)
T T T .T a
zZ=Mx+v+g, wo= (W, We, v,)

wliere nonlinearities f and g might be added to the model for performance evaluation
purposes, but might be ignored during control design. The associated parameters
(A,8,D,M) may be deduced from (2.1), (2.2). There may be several stages of model
simplification between the most general model used for simulation and per formance
evaluation before flight and the model upon which the control design is based. To
simplify the discussion, we discuss only two models. In this section, model (3.1) will
represent the physical system (admittedly in this case, the state X is infinite-

dimensional and the parameters A,B,D,M are not precisely known). The reducad model
used for controller design is

©

R

oot

AR e 2 LT
A '

RR = ARXR + BRU + DRwR (XR € Rr)

(3.2) W
~.y
2 = MpXp * Vg B
v '\\-,
and we postpone the discussion of how (3.2) might be derived. Our current interest S

concerns the characterization of the differences between any two models (3.2) and
(3.1). In order to match identically the measurements z(t) actually obtained frem
the physical system, one could define vector functions of time e_(t), ez(t) as those
which drive the state and measurement equations in such a way : :

R R Rt g el

H"£T;f;fﬁégkh;;éz(£,




. that Z(t) matches  the actual measurements. Such model error vectors have been shown
- [18] to be composed of four parts ' '

e =,eAfet+gd e _ ; . ' (3-4)'

“where e, is due only to parameter errors, e, is due to errors in model crder, €, is
due to neglected disturbances and €,k is due to neglected nonlinearities. Of course,
none of these €, €4, €4» €, can be known a priori. Parameter adaptive control
- and identification methods [19]-[21] strive to drive e,(t) to zero. Such methods
can be effective when e, 18 the dominant esource of error in (3.4). Terms contribut-
. ing to e, depict the coupling between retained and truncated equations in the

" (infinite-dimensional) model underlying ths physical system. Much attention [22]-

. [24] has been devoted to the reduction of the “spillover" terms €, (and their

corresponding closed-loop consequencés). Such approaches can be e¥fective if e, hap-
pens to be the dominating term in (3.4). Orthogonal filters [25], [26] make fewer
assumptions about e(t), save that it is square integrable. This more general charac-
terization of model error has the potential advantage of simultaneously accommodating
- errors of the type (3.4), but the method also has disadvantages in the design stage.
The method requires the selection and storage of a set of independent functions (to
be used for fitting the actual error function), and the choice of these functions
is not unique. One choice is to use elements of the state transition matrix for a
Eigger order model as in [27]. Another choice is to use orthogonal functions as in
25].
Having described the nature of the modeling errors, we wish now to be more

explicit about their,effects. These effects wil]l now be described, first in temms
of stability and then in terms of a quadratic performance metric. °

4.0 STABILITY AND PERFORMANCE IN THE PRESENCE OF MODELING ERRORS

4.1 Stability and Modeling Errors

Let
u=Gxg, _
u(s) = [6(sI-Ag-BpG+iMo)1Flz(s) (4.1)

XR = ARXR + BRU + F(Z - HRXR)

desc~ibe the dynamical controller used to control the system (3.1). G is usually
chosen to stabilize [AR + B,G) and F is usually chosen to stabilize [A - FM],
although the controller poles, A.[Ap + B.G - F}, j =1, ..., r, should also be
stable [28]. There is no unique elationShip between the parameters of the control-
ler (4.1) and the evaluation model of the system (3.1). The controller parameters
(AR, B,, M,) may or may not be related to some reduced-order model obtained from
(3.1). For example, the simpler model (A, BR’ Mp) might have been derived directly
from physical laws, but using an idealization * oE the system that was simpler than

.‘§~the idealization that led to (3.1). For these reasons the phrase "parameter errors"

" hags no unique meaning. In fact, none of the terms in the decomposition (3.4) is

- unique.

'*By tdealization we mean the het'df'ﬁyﬁotheses within which the dynamical system is
assumed to move. For example, different idealizations of the same system might in-
clude: an elastic material continuum, a sct of connected rigid bodies, a rigid body.

156




It has been established [29], [30] that

(a) ® When the controller gain GF in (4.1) i3 "small enough" the modeZLng
errors will not destabilize the closed-loop system which is apen-loop
asymptotzcally stable.

(b) ® When the controller gain GF in (4.1) is "large enough" the madéling
errors vill alvays destablize the closed-loop system.

(c) e In the absence of structural dbmpzng (C' = 0 in (2.13)), « stabZzzznq
linear feedback controller (4.1) does not exist.

"The interesting conclusifons concerning (c) are that:; (i) the undamped structure
is used most often in model development fo. ~ontrol design, and (11) the small and
* highly uncertain structural damping that every real space structure will have is
what makes control possible. For successful application, every control scheme ralies
upon and presumcs the existence of a finite amount of structural damping in the
open-loop system,

Rate feedback "guarantees" to add some damping in the system under the presump-
tion of infinite bandwidth sensors and actuators [30], but too much rate feedback
actually degrades output performance (such. as the line-of-sight errors in a tele-
scope). See [31] for a spacecraft examplc of this phenomenon.

- 4.2 Performance and Modeling Errors
We cite here the performance available with and without modeling errors. If
one chcoses & and F in (4.1) to be optimal for the model (AR bR’ MR with noise
intensities Y4, and V, respectively for the zero-mecn white noise processes WR(t) and °

vp(t), and iF there vere no model errcrs e(t) =.0, then the trade-off between the
optimal output performance

a
Yy * e E"y“% (9> 0 . (4.2a)

and the optimal input performance

in EllullZ, R=Rp>0 (4.2b)
[¢]

.8
Uye = 1
MS e

(where p is an arbitrary weighting scalar chosen by the designer) would be
"hyperbolic" in the sense of Fig. 1.
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The outpﬁt of the reduced model is ¥ =-'CR)(R. Under the assumptions of controllabil -
ity of (AR, BR) and observability obeoth (AR’ CR)’ and (AR,'MR) £32] :
| 1l T } WT T T
G Y Ro BRK, Q = KAR + ARK + CRQCR - GRRGR | (4.3a)
I S B _ opT T ry T : P
F = PMRVR s 0= PAR + ARP + DRNRDR FVRF | . (4.3@?.

and small p leads to large control gains. In the presence of inevitable modeling -

errors,. Fig. 1 illustrates the eventual {and perhaps rapid) degradation in output ~—
performance with increasing control authority (decreasing p). This result is not
predicted, of course, by the standard linear quadratic Gaussian (LQG) theory since
the theory relies upon the absolute fidelity of the mathematical model. Methods

to combat such model error effects are the subjects of many papers, but satisfactory
solutions have yet to emerge. For the lower order controllers, the low control
efforts in Fig. 1 give large errors and the large controls give large errors.

Thus, there exists an optimum level of control effort which is a function of controller
order.

For any performance metric of the form (4.2), the relationship between stabil-
ity and the value of the performance metric V is established as follows. Denote the
cloged-loop plant matrix by A, and the output matrix by C, and ignore nonlinearities
f and g. Then for the closed-loop system . v

. X = Ax + Dw . e ° v c (4.4a)
’ A o A
y = Cx, V=1Tim E“yng’ 2->0, yT = (.YT- uT) (4.40)

If the matrix pair (A, C) is observable and (A, D) is disturbable then V is finite
only if A is stable [32]. Thus, relative stability information is contained in the
magnitude of V, and we have the result:

Proposition 1: Stability margins with quadratic performance metrice

If observability and disturbability are properties of the cZosed-Zoop.system (¢.4)
then Yyg Serves both as a stability margin and a quadratie performance metric.

Thus, the calculation

Yys = tr PCTOC , 0= PAT + AP + DuD! (4.5) -

provides an acceptable performance evaluation if the triple (A, C, D) is disturbable,
observable . There are three problems which prevent the use of proposition 1 in
guaranteeing stability of physical systems. :

(1) The “physical" system is infinite dimensional. - ' S

'(2) Observability and disturbability tests are impossible te do with . ;
. precision on a digital computer, even for a finite-dimensional model.

(3) The physical system is never observable in the following sense.




e

T
KA

\ 1
iy T
Pete et 2y

s Y

R
i

'\1

ARt~ i

¥

S S PR

L -
° 7
PRPRE I NLA L L N

o
wt
i S

-J' ’

2

\

PRI T P S I VTS PR O P RN N

L]

RLPATEICr S 1 LN

Proposition 2: Unbbservability.of'physical systems

As mathematical models increase in complexity, deseribing more and more_ com-
pletely the dynamical details of the physieal process, the model eventually includes
wnobservable states with respect to any finite dimensional output vector Y.

LR PUSAC AN S

Prorosition 2 explains the sense in which physical systems are never completely
observable. This proposition is intuitively verified by imagining that microscopic
phenomena such as molecular motions are not going to be observable in the rate gyro
measurements. Even though one may not be interested in such trivial examples as
molecular motions, the useful point of propositions 1 and 2 is that as far as
stability is concerned there is no clear way to know when minuts motions become
"nontrivial™. Thus, the propositions serve to remind us that one can never guaraitee
stability of the physical system. This point may be made from another view. Since
stability is a mathematical property of a mathematical model, interpretations of
stability for the underlying physical system must be accomparied by precise state-
ments of the type of modeling errors ignored. Thus, the term "stability guarantees"
refers only to properties of the assumed model, and these comments must be kept in
nind when reading the “stability" results of this (or any other) report.

N T TR S
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5.0 .COMPOMENT .COST ANALYSIS

The central idea to be discuss2d in this section is to exploit the precise
statement of the optimal control p:ublem in order to predict which system components
will make the largest coantribuations in the total quadratic performance criterion.
These components are retained, and the balance is discarded from the model. A
“component" of tl.: system can be any subset of coordinates designated-by the analyst.
For example, all of those coordinates associated with a particular substructure
(antenna, solar panel, etc.) might be called one "component" for the purpose of
assigning a value to the component for its contribution ir the total performance
criterion. The general ideas of such "component cost analysis" (CCA) are described
in [1, 33-36]. As another example, each modal coordinate might be designated as a
"component”. 1In this event the procedure becomes modal cost analysis (MCA), and the
result is that the contribution of each mode is determined for the given quadratic
performance ‘criterion. MCA has been appiied to models of flexible structures in B7].
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5.1 Perfcrmance Objectives

Y o""_ .

The performance of the dynamical system must be judged by a specific criterion. -~
One may require specific pole locations, focusing only on stability, but that leaves .
the question of eigenvectors and output performance imprecisely specified. Stabil- -
ity is clearly not a sufficient design goal. The linear quadratic Gaussian (LQG) >
problem has the advantage that poles and zeros are involved in the design specifi- -
cation and that the motion of specific variables of interest can be penalized direct-
ly by inserting these variables into the cost function to be minimized. On the other
hand, these specified variables may be regulated satisfactorily while other variables
become unbounded. The earlier Proposition 1 states that observability is sufficient
to prevent this situation,.but it may not be known whether all the potentially unstab-
le motions are observable in the selected variables for mininization. Thus, in

TR R

SR
HAR

oversimplified terms, the "classical" approach is to "design for stability" (and then ,?
we must check for performance), whereas the LQG approach is to "design for perfor- o
mance" (and then we must check for stability). Imnsights into the best of both v
methods are required for successful designs. In this section the LQG methods are I
presented. - : R
159 -
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We define by the vector y the collection of all variables we wish to directly
control. For example, if attitude control of theAtigid body [described by n_ in
(2.3a)] is the objective, then one might chgoge Y = Np. Alternately, if vibration
suppression is the only objective, then y = ng might be chosen. The choice of a
weighting matrix Q in (4.2) js oftep dictated by energx considerations. As an
illustration the choices {Q = I, y ® {_} lead to yTQy-- kinetic energy in elastiec
moges. The potential energy in elastic modes is characterized by the choice {Q 4y
Y = n_,}. The expected value operator E is required in (4.2) due to the presence of
random '"noisy" disturbances in the actuators and sensors (2.1). The control mean-
square effort uyg is added to the performance metric, where the scalar p is an :
arbitrary weighting scalar which trades off control performance yyg versus control P
effort uMs. In practice, p must be chosen so that umg does not exceed the physical
bounds of the actuators or structure load design constraints.

The objective of component cost analysis is to decompose the performance metric
V.into "component costs" Ui’

»

L]

R e _ .
V= Yms +p Uns = X Vi (5.1 :
l i=] . ;
g ' . . ) i
H. where n. is the number of components in the system and V; is in the Zn situ contri- )
[ c " 1 :
o bution of component i. We choose in the next section to define "components" of the .
L

cpen~loop system as “modal" coordinates and their sensitivities. In section 5.3 ;
we choose to define a "component" of the closed-loop system as a state of the
dynamical controller. In each case we intend to assign a relative importance to
each component by determining its ranking in the manner
(] ° © ° <] "o @ ©
U-' _>_°V2 _>_V3_>_ . _>_Unc (5.2)

e e et e tw—wansn e se s

and truncate components with small component costs Vi from the system. The next two
sections give the necessary mathematics.

5.2 Modal Cost Analysis

D Ignoring the sensor and actuator dynamics in this section, and considering the
. nongyroscopic system,

By +ahg + win, = By,  ngeR (5.3a)

! - T(z) = ' :

\ Bwg(t) = 0, Ewy(thwy(x) = Wys(t-1) ' (3-30)

Vg s
‘® A i 2

— V=y,. =limE|yl| (5.3c) :
‘_ MS too l Q

whiere only the noisy part of the control forces U, = U + W, is considered in this
a section. hkhen N is small enough for closed-loop control calculations, we will not
' ignore the effects of U in model reduction decisions. However, we now presume that
N is very large in (5.3a) and U cannot yet be computed. )

Our immediate objective is to ascertain the contribution of each mode of the
N system in the overall cost value V. We presume at this point to be dealing with a
-2 system of very high order whose control inputs u{t) are not yet known. Yet to
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ignore the source of excitation altogether would be a mistake since the final judg-
ment of the quality of the model is in the presence of actuator activity. Until more
is known about u(t), {(after control design considerations) we assume that U = u'(t)
is a white noise of random disturbances being oropagated through the actuators gﬁe to
electronic noise in the electrical or magnetic amplifier devices, ete. The consider-
ation of the control and its effect in the model reduction process will be postponed
to the next sectjon. To proceed we now need the following definitions. '

Definition: ILet X4 be any subset of n; state variables of the linzar system.

x = Ax + Ow , Ew(t) = 0, Ew(t) w(x) = W&t-1)
y = Cx ) o | '
. N . (5.4)
xT=(...xiT..'.) . xis:R1 . xeRnX,nx= y n,
i=1 !

tow

A
vetim EY, Y2 yTgy

Here X, will be called the ith "componeni” of the system and the "component cost”
assoctated with ccmponent’ X, ts defined by

Ay .. aY Y A v ayY
V.= limE—-—xX, , == (—, ccvy =—) ., (5.5)
.1 Z(t axi i X3 xi'l axini

n
v= 1V, (5.6)
and that the component costs may be computed by

Ui = tl"[CTQCX]_i_i s 0= XAT + AX + DWDT (5.7)

where [CTQCX]ii denotes the n.Xxn. matrix partition of CTQCX. The above analysis
(5.6)-(5.7) of a linear system is called component cost analysis (CCA) [1]. The
“components" of a system might be defined from physical or mathematical considera-
tions. From physical considerations X; might represent any physical component of
the system such as the states associated with:

(a) A substructure of the flexible spacecraft (an antenna, a solar panel, a rigid
body, etc.)

(b) An electrical or electromechanical element in the system (actuators, sensors,
amplifiers, filters, etc.)

From mathematical considerations X; might represent any mathematical component of
the state in any transformed (.nonphysical) coordinates. One such example which is
common is to define the "components" to be '"modes'" of the systems. Imn this case the
“"component costs" (5.7) are called "modal costs" [1], [36], [37]. We choose to

T '... .
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now examine the system usifxg such modal cost aﬁélysis (MCA).
Theorem [30] = ' : L o S e~
For the system

0, {n;(0), ;,i(on specified, i = 1, ..., N

Ry + 2nj0py + oy =
N . - I .0
y= 1 oy +ryng) ﬁi

the cost function

N
vi r Yoyt = v, (5.9)
0 i1

decomposes into the rodal costs (!,i given by
1 av | 1 2 2, n2qr. 2 #;2(0)
v S E oy x40 g Lipgl § + wZirg 131 D100 +

ne»

]
(5.10)

xiT (ni- r.l.i)

e
RS
(<]

.

[«

[e]

in the limit as Lwi™ 0. < °
_- Theorem {30]
-
- For the system
4 M+ 2.0 R twln, =b, ul+dw, waN(0, W), u. ~ N(O, U)
i i B i iw i > e ’ :

N (5.11)
y- iZ] (pi“i + r-ni)

where u, and W are zero mean uncorrelated white noises with intensities U and W,
the cost function

Vi (5.12)

nHe12
-

v 2 vim eyToyy -
! .

e and 1

decomposes into the modal costs V_i given by

A m e e v .

8. 1 oY 1 2,,.2 2 27 1 -

4 _ 3 = . . b. + B .1 :
v, . l:_': 5 E {axi xl} r ["p] ”Q + w, "r‘i ”][" '|“U "ijLNJ “‘z'w (5.13) i )
o o (5.13) ¢

A L
v £yl ‘ :

_ The proof of the first theorem may be found in [7] and the proof of the second may be
found in {8). The value of (5.13) is that both disturbance and control points of

L 162 ' | | ! :




excitation are considered in theTsubsequent model reduction decisions. Of course,
" the real purpose for including b; u 6 in (5.11) is to anticipate some sort of excita-
tion through the actuators prior to the actual design of the control law.

According to modal cost (5.13) the importance of a mode is determined basically
by the product of three propertles of the mode,

v, = ('c\me constant) (observabﬂ1ty)(dlsturbab1hty + controllability) (5. 14)

!! ' . where mode i is: unobservable in position if and only i1if llp ll = 0, unobservable in
1 rate outputs if and only if ”r1” = 0, undisturbable from W 1f and oniy 1f ||d.|| = O,
and uncontrollable from u_, if and only if ||b, H 0. The expressions (5.10) and

(5.13) are general modal costs for matrix second-order systems which have no gyro-
scopic terms.

1
% »
!I 5. 3 Component Cost Analysis as a Spacecraft Control Design Algorithm

The results are now combined to form a design algorithm for flexible spacecraft
control. Each step in the algorithm is discussed and motivated in some detail.

T Al. The system under consideration has the form (2.1) with G' = 0 and (2.6) holds.

o A2. Rate sensors are collocated with the m actuators. An actuator applies a force
. between two points in the structure, and a sensor measures the time rate of
i change of the resulting rectilinear displacement. Alternatively, an actuator

i applies a torque between two points. in the structure, and a sensor measures the
«time rate of change of the resulting angular displacement.

oy A3. A number of the M actuators equal to the number of rigid body modes are located

= so that the rigid body modes are controllable.

- A4. There are n_ inertially-referenced position sensors located so that rigid modes

i are observagle.

- A5. The number of elastic modes calculated for the structure is N.

ff A6. The largest Liapunov equation of the form (5.7) which can be solved reascnably

. accurately on the available off-line computer has dimension 2NL x2NL.

- A7. The largest Riccati equation of the types (4.13), (4.14) which can be solved

§ reasonably accurately on the available off-line computer has dimension NRXNR.
A8.

The largest controller (4.1) which can be accommodated in the on-line computer

3 has dimension Ng, where No < Np < 2N < 2N

5: A9. The highest bandwidth of the available actuators is wgy®

i Al0. The parameters considered uncertain are given by pT = (c], cees cNImf, ey uﬁl
; Bays +os Bey):

ﬁ All. We -have in mind the performance measure

.- T

. . T

. l1mE{ayQy+ByQy+puTRu+ Z o(%ngp—+p?—ogu)} (5.15)
i toeo R j=1 ' Py 3y Pi Py

. - + = l -

: whese for v 2Ne Nem, Ne 3 R n.

§ To illustrate the design procedure we use the simple example
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where

. " B u+? o N, eR]

'ne + chne + mzne | Beu + Dew . neeR4 . (5.16) -

| y Pr"r + PeVe s zp_= Mpr"r + vp » 2. = Mreﬁe + Ve

£ = 0.005 , = diag [1,2,5,10], H. = 10, B =1, D, =10, P = 1, Q=100

B=1, Eq(t)uT(r) = Us(t-t) , U =1, Ew(t)w (z) = Ws(t-x), W = 100
| Evp(t)v.:;(r) = Vs(t-r) o

V.= 10, Ev.(t).(x) = V s(t-t) , V. = 0.1, Py = (0.1, 1.0, 0.01, 1.0)

p
éz = (0.1, 0.01, 1.0, 0.1)
ﬁg = (0.01, 0.1, 0.01, 0.001)

and we take, for illustrative purposes only,

N =4, n. = 1, m=1, NL = 3, NR = b, NC =2

[ : ° - o o

« The measurements Z_ and Z_ respectively represent position of the rigid body and a

rate measurement. ' It may be readily verified that all the assumptions (Al-All) are
satisfied.

5.4 The CCA Design Algorithm

Step I: The Preliminary Model Reduction:

Set B = =g, = 0 in (5. 15) and use MCA (5.13) to reduce the number of vehicle
modes from (N +n ) to (NL +n ), where nr is the number of rigid body modes surviv-
ing the MCA truncation.

Purpose of STEP I: Reduce the number of modes to a tractable number, but do so with
knowledge of y°* Qy, the primary control objective.

Example of STEP I: For (5.16), using (5.13) we have
V(nr) = o U(n]) = 1.00, V(nz) = 625.00, V(n3) = 40.40, U(n4) = 0.50 (5.17)
Hence, by the modal cost rule for truncation (5.2), mode 4 is truncated and the

retained modes, listed in order of their modal cost (their predicted importancée im
the problem), are (n., Nys N3s n]). The reduced model is

nr = Bru +D W : SR . | (5.18a)
hé + ZCm'ne + w'zn B u + D' (5.18b)
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=Pn_ + Py , 2' =M n + v, = M' n' +vy . _ (S.Iéb)
re.ee poprr p re’e r cont'd.

I

L
B

where

?
smamedn .

w' = diag [2, 5, 1] ;'véT - (0.10, 0.01, 0.01)
BéT < (0.01, 1.00, 0.10) , P} = (1.00, 0.01, 0.10)

STEP II. Rate Feedback Design:

= +
Set u u0 u. where

‘= . = IT -1 Typ T [ Ty -1
U, = -6z, , G.= (B;'B)) B, (P, QPg8-2tu') B (B B, Y (5.19) i

where B is chosen- large enough so that PéTQPeB—ZCm >0 . ' e

Purpose of STEP II: 1t follows from theorem 6 in [30] that the control (5.19) is the
control which is both the optimal measurement Zr feedback control and the optimal o .
state feedback control for e 1

Tn -1 . 4

rGr u.} (5.20)

- Vim Ey] [2c0' + BLG ] he + U . 3
toe :

subject to (5.18b). Furthermore, such a control increases the relative stability of
all controllable modes and, of course, does not move others. Hence, the system is ;"
stable in the presence “of almost all" modal data uncertainties. However, this pro- .
mise is only wvalid for those modes within the actuator sensor bandwidths. The main
purpose of STEP 1I is to increase the dampirg of those modes that MCA has identified
as critical to the cost function, and to do this for a larger number of modes than ot
the subsequent outer control loop U_ can be optimized for. This allows a control -
spillover "cushion" in the sense that th4e control spillover from up will have to o
push those residual poles (truncated in the U, design but pregent in the U, design -
of STEP II} further to the right to destabilize them. Now, in order to be sure -
that STEP II has provided "spillover protection" for the same modes for which such R
protection will be needed later, it is important that the design of y_ and y_ ve Sh
"coordinated' to the extent that they are both concerned with the regulation of the R
output vector ¥. The rate feedback design minimizes rates, so choosing U, to mini- B
mize Y is the rational thing to do. Hence, we may interpret STEP II irn the spirit —
of (5.15) by setting @ = g, = 0 with u - u. . To match this objective as closely as -
possible with (5.20), we sét

-1

L BPéTQPé : 200" + BLG,BY (5.21)

pRo =G

and find the G_. which comes closest (in a least squares sense) to satisfying the
second equation in (5.21). The result is (5.19).

Example of STEP II: From (5.18), (5.19)

G.=7.82 (5.22)
The system (5.18) is now described by

o .T - )
r * B6BL nl Bu, ' DM (5.23a)
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B | ' |‘ [ st . .2 v o ] | .-
ne + [2z0' + seGrBeT] ng * w'ng Be“o + D (5.23b)
= ' = [
y = PY‘ + P 'ne , Zp . MPT‘“Y‘ + Vp =M ene + Yr

STEP III: Second Stage of Model Reduction:

Put (5.23b) in the state form

X = on.+ Bouo + Dow j ) (5.24)
y-= Co-x
- T_ 7T T
z=Mx+v z (Zp » 2,)
where the 2N, components of X are n' , n' i=1, ..., N arranged in any order.
L e. e. L
Compute ) 1
_ T T
= [c Qcoxo]n s 0= ono + A X, *+ Downo (5.25)

and delete from (5.23b) those modes with the smaller component costs defined by

. A .
Vin, » at ) = Vins ) + V(n)) (5.26)
e;* e e; e | |

where U(n ) and U(n ) are computed from (5.25). The number of equaticns retained

in (5.23b) is ( J)

Purpose of STEP ITI: STEP III must reduce the model (5.23) to "Riccati-solvable"
dimension NR to prepare for desigh of the control uo.

Example of STEP III: From (5.23b)-(5.26) we have

V(né]. né]) =.0.60 . U(néz, ﬁe ) = 609.20 , u(neB, "é3) = -0.02 (5.27)

indicating that the equation for n (t) is to be truncatec from (5.23b). The model
now is put into the form €3

X = Ax + Bu, + Dw
y-= Cx (5.28)
zZ=Mx +v
T T .T ' 'T '|T ‘nT
where X' = (“r’ L neT, Nps nez, "e])‘

STEP IV: Design of the Outer Loop uo;

;] in (5.15) to get the optimal controller

Set o =_0 = B, pRo =G
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o

G

Gx , & = AX + Buo + F(z-MX)

-GrBTK , 0

KA + ATK - KBG_BTK + CTqCa | (5.29)

F=xuv1, 0=xaT + ax - xuTv-Tmx + pup?

Purpose of STEP IV: The value of R = G;] has been established earlier. Now the
optimal controller for (5.28) has been computed ‘in (5.29), assuming certain para-
meters, O, = 0. Those modes of the structure that are observable in y are also
observable in y. It is_in this sense that the rate feedback controller of STEP II
(which focused on the yTQy term) is "ccordinated". B

Exanple of STEP IV: The essential data from (5.29) is

(-3.16€-01, -4.41E-02, -5.77E-01, -8.16E-01, -4.41E-03, 2.62E-01)

G =
C = (1.00E+00, 1.00E+00, 1.00E-01, 0, 0, 0) , « = 7.82 E-03*
" 1.00E401 0 0 0 O 0
0 0 0 0 1.00E-02 1.00E-01
0 o0 0 1 0 0 ]
0 0 0 0 ] L 0
A=]0 0 0 0 0 1
0 0 ¢ 0 -7.82E-02 -7.82E-01
0 -4 0 O -2.08E-02 -7.82E-03
0 0 -1 0 -7.82E-03 -8.82E-02
0 0 0 7 E N [2.516400 6.35E-02 |
0 0 0 0 2.51E-02 6.30E-04
p= |0 0 0 B = 0 F= 2.60E-03 6.78E-05
1 1.0E+01 -7.82E+00 1.00E+00 3.16E+01 1.62E+00
1.0E-02 1.0E-01 -7.82E-02 1.00E-02 3.126-01 1.66E-02
L 1.0E-01 1.0E-02 -7.82E-01 | | 1.00E-01 | | 3.23E-02  3.36E-01

*Multiplying (5.15) by 1l/a yields a parameter p/o to be selected to achieve an accept-
able control effort., . The best value of o« is therefore determined from Fig. 1 as that
choice which corresponds to the lowest point on the dotted curve of Fig. 1. This
point is found numerically, first picking an o then truncating the controller to the
desired order Nc, and repeating this process for a new a. Thus, the above value of

a was found after several passes through STEP V.
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STEP V: Controller Reduction:

The optimal system of STEP IV is
X A - BG X ‘D 0 Wy
(x) | FM A+BG-FM X 0 F v
y cC o X\ -
()10 -
\u |0 G X

which is now to be evaluated by criterion (5.15). First we show the simpler case of
known parameters (ai = 0).

Ax + Dw

(5.30)

STEP V-A: Controller Reduction With Certain Parameters (ci = 0k

Delete from the controller

: N
X = [A+*BG-FMJX+ Fz , ReR N |

. (5.31)
u, = Gx :

those states (ﬁi, ai) with the smallest costs V(ai’ %i) = V(ai) + V(ﬁi) defined by

v, = [chcx]jJ. . 9= xAT + AX+ D' , Q= block diag [Q, 6']. . (5.32)
for j = 1 + NR’ i=1, ..., Ny vnere V, = U(ni) and V. ., = U(;.) if X has the form
xT = (... ngs ﬁ1. ...). This'yields the reduced contioller

S R

Xp = ARxR + FRz » U = GRxR » Xp eR (5.33)

where AR is obtained by deleting the indicated rows and columns of [A+BG-FM], FR is
obtained by deleting the same rows of F, and GR is obtained by deleting the same
columns of G.

Purpose of STEP V-A: Reduce the order of the controller (5.31) to the order Ne accep-
table by on-line software limitations.

Exampie of STEP V-4A: The calculation (5.32) reveals that the cost-ordered :omponents
of the controller are

~T ~ . ~ 3 - ¢
x' = (n. noon Na s Tig s Ny ) (5.34)
r r 62’ ez e] e]
Hence, 1f only 4 components of the controller are to be retained they would be
°T A 2 - :
xg = (ng 0y e, nez) (5.35)

and if only 2 cbmponents of the controller are to be retained, they would be
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“T (n,., n,.) - | ' . (5:36)

The corresponding reduced controllier dynamics are deduced from (5. 32) in the manner

_described above.

STEP V-B: Controller Reduction With Uncertain Parameters (c. > 0)

Delgte from_the controller. (5.31) those states x with the smallest component costs

v, U(x , X5 ) computed by

1

p |
v, = kzo [c,%,C, X155 » 0= XAy + AX, + DMD, | (5.37)
for § = (it + 2Ngk), i = 1, ..., Ng, where
A 0] D ‘¢ o
A, = “ il v, = ’ , _CA - ‘, ; (5.38)

- Y 2. 2
Q, = block diag o, oy sQ.es OVQJ
and where @ is defined by (5.32)

Purpose of STEP V-B: The component costs (5.37) represent the sum

v, = V(xi) + )

“ 1<

V((x )pk) ‘ (5.39)

where the total cost is given by (5.15) with B = 0. By use of (5.38) and (5.30) the
total cost may be written
NR NR ;

V = tr [CAQACAxé] = 2 U(x , x ) + 121 v(x 2 X p) Xip = 55 (5.40)

A IX s

where V. in (5.37) picks out the first terms in (5.40) due to X,, The remaining
terms in (5.40) are due to the states X. and their sensitivities, which are not needed
for this design but may be computed from the remaining terms in (5.37). The parti-
cular range of indices in the V. computation of (7.58) is due to the choice of
coordinates representad by (5. 3%) Of course, any other choice of coordinates may

be chosen with an attendaut change in the range of indices jj in (5.37) to identify
those variables of the augmented state vector X representing controller dynamics and
their sensitivites, X, and X;_.. STEP V-B allows sensitivity considerations to inilu-
ence the controller reduction? whereas STEP V-A assumes the parameters are known

a priori. There is an additional computational burden in STEP V-B and for this step
assumption A8 must be changed to

No<2Np <2 N <2N
due to the fact that (5.37) decomposes into (v+1) Liapunov equations each of which
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p—=]

is ZNRxZNR [35].

Etample of STEP V-B: Assume uncertain frequencies Wy Wye Hence

pT = (w]’w2)9 5 = (]a ?)'

E(w]-fal)z = ug = 100

s
1

o = Elwp - ap)? = ic2 = 2(100) = 200

Carrying out the cemputations (5.37) we find that the controller states arrangcd mn
their cost order are

XU = (Mivs Movs Mios Nus Doy n0) (5.41)
ne]. ne]. Tps nr, nez. nez .

Hence if only a fourth-order controller is desired we would choose

~

T_ ,° : ~ ¢
Xp = ("el’ Me1? "pp? nr) : (5.42)

If only a second-order controller is desired we would cliocse

~

T, 2
Xp © (“e]' el

3

) . ‘ - ¢ (5.43)

Controller (5.43) would lead to instability since the rigid btody mode has been
truncated. By comparing (5.34), (5.25) and (5.36), respectively, with (5.41),

(5.42) and (5.43), the ‘nfluence of parameter sensitivity on the reduced controller

design can clearly be seen. For example, (5.34) indicates that (n n } are more
impertant than (n_., ne]) in the nominal optimal controller (5. 31), whereas (5.41)
indicates that, from pirameter sensitivity consideration, (n el’ n ]) is more
important.

6.0 CONCLUSIONS

We have outlined in some ¢&:tail many of the critical problems associated with
the control of highly damped flexible structures. The practical problems include:

* High performance

* Assembly in space, configuration changes
* On-line controller software design

* Lack of test data

Underlying all of these practical problems is the central problem of modeling
errors. To justify the expense of a space structure, the performance requirements
‘'will necessarily be very severe. On the other hand, the absence of economical
tests precludes the availability of reliable data before flight. Thus, a greater
burden of responsibility is placed wpon analytical methods in the design without
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the benefit of test data for a system nearly wnstable without control. This 18
the triple jeopardy faced by all flexible space structure designs.

Some precise statements have been verified comcerning the performance of such

structures in the presence of controllers based upon erronsous models. The modeling
errors can always be classified intc four categories: (1} parameter errors, (2)
model order errors, £3) disturbance errors and (4) neglected nonlinearities. Fin-
ally, a design algorithm is offered which has these properties:. :

. 1. Provides dazmping for a larger numit.r of modes than the optimal attitude

controller controls. This rate measurement feedback design, with collocated
rate sensors and actuators, provides control spillover protectlon for the
truncated controller

2. Coordinates the rate feedback design with the attitude control design by
use of a similar cost function

3. Provides model reductton and controller reduction decisions which are
systematically connected to the mathematical statement of the control
objectives and the disturbance models

There are many possible versions of the CCA design algorithm. Some versions would
require more computation with some attendant improvement in performance. For
example, other choices of coordinates besides 'modal" coordinates may provide better
reduced models in Section 5. However, in the interest of clarity the procedures
have been explained with some economy of detail.

Flexible space structure control is indeed a fitting challenge to the best of .

available control and estiwatioa theories. And, conversely, out of such challenging

c exampies come pointed needs for new theory.

"
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1.0 INTRODUCTION

Many proposed large spacecréft have missions which embody two challenging
requirements: '

(1) Rapid reorientation mancuvers ("slews")
(2) Rapid vibration arrest and fine pointing upor. completion of the slew

The objective of this discussion is to overview some methods and applications which
determine optimal maneuver controls. Aside from the usual modeling issues for large
space structures, the large-angle maneuver problem is complicated by the inherent
nonlinearityv (i.e., three-dimensional rotational maneuvers are nonlinear even for a
rigid spacecraft). Of course, additional nonlinear effects arise when even small
deflections are considered due to kinematic effects such as rotational stiffening.
Thus, we have the dual curse of nonlinearity and high dimensionality.

One can approach optimal maneuvers in a fashion analogous to trajectory design
for launch vehicles. A nominal open-loop maneuver could be determined a priori; real-
time feedback controls would then determine small perturbations to the open-loop con-
trols to account for modeling imperfections and external disturbances. For many
vehicles and missions, it may preve satisfactory to Jetermine open-loop maneuvers
which suppress vibration and simply forego feedback controls until the terminal fine-
pointing phase after completion of each slew. Of course the terminal vibration sup-
pression and fine-pointing problem 1s naturally suited to feedback control. In this
paper, we emphasize determination of the optimal open-loop nonlinear maneuvers
(slews). The slew controls are determined in such a fashion that vibration of
selected modes is penalized en route and arrested upon arrival at the ta.get state.
Some attention is also given to large, slow, linear maneuvers for which the asso-
ciated slew controls can be cast in feedback form.

We initjally summarize the main aspects of optimal control theory which are
implicit in the remaining developments. We then discuss the essential ideas involved
in a class of methods ("continuation" or '"homotopy'" methods) which we have found most.
useful in solving the resulting two-point boundary value problems. Several low-
dimensioned, nonlinear manevvers of multiple rigid-body configurations using ouptimal
momentum transfer are discussed. Sevoial linear and nonlinear flexible-body maneuvers
are then presented and include distributed controls, vibration suppression/arrest, and
computational issues. Finally, we summarize the status of our present work and the
key problem areas in which future research appears most urgent.

2.0 NECESSARY CONDITIONS FOR OPTIMAL MANEUVFRS

We will consider here only finite dimensional systems which can be satisfactorily
modeled by a system of generally nonlinear ordinary differential equations of the form

x=£ (t, x, ) o (2.1)

where x is the n X 1 state vector, u 1is the m X 1 control vector, and f is
an n X 1 vector of generally nonlinear functions of all arguments. Suppose, for
the present discussion, that we are concerned only with the fixeu-end point problem
for whizh the boundary conditions
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are fully specified. The more general circumstance in which some boundary conditions
are free or are constrained to lie on a terminal manifold is considered in rcfer-
ences 1-6; essentially, some of the 2n conditions (2.2) are replaced.by appropriate
transversality conditions, The number of boundary conditions will remain 2n. Suppose
we seek an optimal control vector u(t) initiating at X, and terminating at Xxg,
subject to the requirement that a performance functional of the form '

tf _ . ' -
J =J. F(t, x, u)dt : (2.3)
t ’ .

Q

is minimized. For the present discussion, we restrict u(t) to be continuvous with
two continuous derivatives. The necessary conditiens (Pontryagin's principle form)
involve the Hamiltonian functional

m=F+r € (2.4)

where ) is an n X 1 co-state vector of Lagrange multipliers catisfying the
adjoint differential equation

T
: _ fam ‘
A= 735Zz . , ‘ (2.5)

and the optimal control is determined at each instant by requiring H(t,ﬁ,l,g)' to be
minimized with respect to admissible E(t); for twice differentiable f, u, this
requirement yields the conditions

2
=0, ——% positive definite (2.6)
du

21

The conditions (2.6) can usually be solved for u(t) to determine the optimal con-
trol in the functional form

u=g (t,A,x) 2.7
Finally, substitution of (2.7) into (2.1) and (2.5) allows us to eliminate u and
obtain the 2nth order system
X o= F(5,%,0)  x(r) =x,  x(tp) = x
. (2.8)
A = G(t,x,0)
The above formulation is summarized in figure 1.
179
;i;\ﬁiggﬁii{x{é{inx:ifQa{;;.ehu;{kémv;u;nixzn;ifuﬁii{iéﬁ{i{i{iiiififiiufiI{{{ii“u'J"C“§'§"J~¥--f~ﬁ

S ~

’ ;\\n -_// \\ > ; ; -

Lt

e




i

IR

DERN & N

s e

Since the 2n boundary'conditions are split, we have a two-point boundary value
problem (TPBVP). These differential equations (2.8) are generally nonlinear, often
exhibit "stiff" character, and gererally resist solution except by iterative numeri-
cal methods. Indeed, a substantial fraction of the optimization literature ("direct"
methods) have been motivated by the numerical difficulties one often encounters in a
frontal attack upon equations (2.8). Tn essence, most of the direct methods are
iterative function space gradient methods which "directly" adjust u(t) and itera-
tively solve equations (2.1) to minimize (2.3) and satisfy terminal boundary condi-
tions. Numerical experience suggests that the direct methods efficiency degrades
rapidly as the problem dimension increases, especially if one does not possess 'good"
starting estimates for u(t); so the issue of which algorithm to apply remains open.
The recent progress of references 1-6 suggests that improved "indirect" algorithms
based upon continuation method iterative solutions of equations (2.8) are indeced
feasible; the methcods discussed herein are of this type. The main vecent progress is
associated with greatly decrvased reliance upon "sufficiently good starting estimates"
implicit in the continuation family of algorithms. The essential ideas are indicated
in the following section.

3.0 CONTINUATION METHODS FOR SOLUTION OF TWO-POINT BOUNDARY VALUE PROBLENS

The basic approach is to embed the problem you wish to solve into a one param-—
eter (a) family containing two prominent members:

For a = 0, the family reduces continuously to a problem whose solution
: is available

For « 1, the family reduces continuously to the problem whose solution

is sought ¢

By sweeping O, one can generateé a sequence of neighboring problems (e.g., for
0=a; Ca, <ag <, ... <oy =1); by solving each (v} problem in sequence, we
determine "'stepping stone' solutions which provide, by extrapolation, starting
iteratives for the next (ak+1) problem. In principle, arbitrarily close starting
iteratives can be determinad. Fxcept for certain singular events (e.g., bifurcation
points), this approach can very nearly juaranteée convergence. Within this approach,
there exists a variety of ways to construct the family (homotopy chain). The manner
in which the homotopy family is constructed has definite impact upon the ensuing
algorithms, We have made productive use of three continuation methods which we now
suminarize,

3.1 Continuation Method 1, Differential Equation Embedding

The nonlinear system (2.8) is written in the form shown in equation (3.1). This
form is quite natural for many weakly nonlinear problems; of course, a =1 {is the
true physical value, and a = 0 results in a linear problem. Provided the linear
boundary value problem can be solved (which is not a foregone conclusior, especially
for high degree-cf-freedom systems which possess a wide eigenvalue spectrum, i.e.,
the system is large and siiff), then sweeping @ in principle generates a family of
neighboring prcblems which can be fterated for Ao(a) to satisfy the final boundary
condition x(tg) = x¢. Each Newton iteration for A (%) can be initiated with an
estimate based upon extrapolating the neighboring o solutions. This method is used
to solve for optimal maneuvers for several cases in the developments below.
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The nonlinear state and co-state differential equations (2.8) are rearranged
and the continuation parameter (&) introduced so that

X =4

i

+A0d + {nonlinear‘terms} .
' ) (3.1)
+ Azzé + a {nonlinear terms}

[

Ary

For a = 0 -» linear problem
For a =1 -+ - problem of interest -

Sweep o to generate a family of neighboring dyramical systems; for each a, iterate
A,(®) using Newton's methad to satisfy the terminal boundary conditions using neigh-
"boring o solutioms for ﬁo(a) to start each iteration.

With reference to equations (3.2) through (3.6), we consider the Method 2,
fixed-point algorithm continuation method of reference 7. This method is called a
“fixed point algorithm" since it has the property that 50 = C 1is the solution of
the homotopy family at a = 0 for any arbitrary specified C. This algorithm 1s
most useful if one wishes to use an approximate initial guess C for }, which is
too far from the solution to permit reliable convergence using Newton's method.

Method 3 (boundary condition embedding) constructs a homotopy family of
boundary conditions for those problems which have the property:

B The general nonlinear problem degenerates continuously to a linear

° ' problem for certain choices on the specified state boundary condi-

tions. As an example, three-dimensional rigid-body maneuvers are
nonlinear, but the single-axis maneuver special cases are linear.

By sweeping a, the specified initial and final boundary conditions are varied from
the easily solved problem at a = 0 to the problem of interest at a = 1.

3.2 Continuation Methods 2 and 3

Method 2, Fixed-Point Algorithm:

An algebraic root solving illustration is:
F(x) =0 (3.2)

Initial guess: x & ¢

Construct the homotopy family

H [z(x),0] = F [z(@)] - (1 - a) F(c) =0 R € 25 ))
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Note the properties:
i [2(0,0] = 0 | | (3.4)
If we take 2z(0) = ¢ arbitrary "fixed point" and

Hlz),1] =F [z(] =0 . ' : © (3.5)

thus z(1) = x by comparison of equations (3.2) and (3.5).

£

Method 3. Boundary Condition Embedding:

When the TPBVP . at hand can be easily solved if the specified boundary conditions
are given a special set of values, then we can construct the homotepy family of
boundary conditions:

SPECIAL SET OF

! H g .
commmarion | | erw ozorees
= Q . + (1 -a)] ...FOR WHICH THE (3.6)
SPECIFIED SPECIFIED
B.C. B.C. TPBVP CAN BE

SOLVED

These considerations are addressed to the important issue of decreasing the
amount of prior information required to start an iterative solution of ecquatiuns (2.8),
For high-dimensional problems with high ser-~itivity to Ao» these methods are most
important; it may prove impractical to extract a solutiod) via the classical "shooting

_ technique." A separate and fairly well-developed subject matter concerns the cal-

culation of the successive numerical solutions (i.e., for each a). The most popular
method is Newton's root solving method in conjunction with Runge-Kutta integrations;
A, 1s adjusted based upon linearizing the n boundary condition residuals depen-
dence upon A, about the previous iteration.

Another popular class of procedures is the weighted residual methods. In this
approach, each state and co-state variable is expanded with undetermined coefficients
times a finite set of specified functions of time (typically, a set of orthogonal
polynomials). The coefficients ol the series are adjusted by solving a linear system
of equations obtained from substituting the expansions into the equations of mnation,
linearizing, and evaluating these linear equations at a sufficient number of times
along the previous trial trajectory. This class of procedures seems particularly
well-suited to stiff differential equations for which tYe traditional (e.g., Runge-
Kutta) numerical methods prove unstable; however, the large linear algebraic systems
encountered are a deterrent to many degree-of-freedom applications.

We mention a third approach, the quasi-linearization method of Miele (the method
of particular solutions), as developed in references 5, 6, and 8. This approach
forms successive iterations by: (1) linearizing the departurs motion differential
equations along the previocus trial solution of equations (2.8); (ii) letermining a
set of n coefficients to linearly combine n trial integrations of these linear
equations to produce a new departur= motion which satisfies the boundary conditions;
and. (iii) adding the departure motion to the previous iteration to produce the next
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trial solution. ' The major diSadvantage'of this approach is the necessity to store
each trial trajectory; for many state variablés, this storage penalty becomes
excessive.

All of the above methods are developed in detail in reference 4 and compared
"using a common set of example problems. Here we note that all of these have been
used successfully (refs. 4, 6) to calculate optimal nonlinear spacecraft maneuvers;
if the trial trajfectories of equations (2.8) can be integrated accurately using
Runge-Kutta. methods, - then we find the classical Newton iterations used (if necessary)
in conjunction with a continuation method (to provide accurate starting iterations)
to be preferred. However, for very stiff differential equations, one must resort to
other methods such as those discussed above, or indeed, abandon the indirect approach
altogether. It is apparent, however, that a large fraction of the optimal nonlinear
maneuver problems of practical interest can be solved by the indirect methods '
illustrated herein and documented in the references.

4.0 OPTIMAL LARGE-ANGLE MANEUVERS OF MULTIPLE REACTION WHEEL SPACECRAFT .

With reference to figure 2, we consider the dynamics of a generally asymmetric
vehicle B having three identical rotors aligned with the principal axes. The vehicle
is maneuvered via internal motor torques [u;(t), up(r), usg(t)] applied to the wheels,

[-Ul(t), -uz(t), -u3(t)] applied to assumed rigid body B, and external torques

[L;(e), Ly(r), L3(t)] from unspeeified actuators. The equations of motion are
equations (4.1} - (4.3).°

Kinematics:

80 = ("(UlBl - wzﬁz - U3B3)/2
B) = (wBp - waBy + w3y)/2 _
. 4.1)
82 = (“’1'@3 + wzﬁ:} + w361)/2
83 = (-wifip + szl + w380)/2
Spacecraft Dynamics:
. 1 . L=y
wy = - i;f:fj.(13 - Ip)wowz + hawy - howy + TI—:jT~
By = - i (1 1 + h I —~——L2 _ %2 (4.2
2 - Iz < J 1~ 3)&)1&)3 1(1,\3 - ]3(1)1 + 12 — 3 - )
- 1 H Ly = u3
Wy - __"'13 o (IZ - Il)wlwz + wy - hlwz + ‘—-———13 -
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Wheel Dynamics:

hy = -3y +ug,  1=1,2,3 ) S (43)

4,1 Optimal Maneuver Necessary Coniitions for the Four-Body Configuration

/ﬂ.- ' -Perfbrﬁance Indices:
e - . |
1 ff 2 2 2 2 2 2 £ - .
‘ tf B . . . ! . tf ’ .
1 1{*2 2 2 1 f.2 2 «2
J, = 5]; _w (Ll + L, + L3)+ Wzku* +uy + u3)‘] dt J; F, dt (4.5)
t [~ t
_1 f "(..2 =2 2 " (_.2 "2 “2) ~ £
J3 =3 j; LF Ll + L2 + L3) + wz 1 + uy + ug dt = o F3 dt (4.6)
3 t . .
£ .
J4=2 Ji-f F, dt . (4.7)
i=1 0
© Egyilt;nian: ‘ 2 N a LI ¢ o
o= yT8 42T+ oh + Fy (4.8)

where the Yy and Xi are Euler parameter and angular velocity co-states, and
the @y are wheel relative momenta co-states.

Pontryagin Necessarj Conditions:

94
3)-1':; = 0 0=1,2,3

Minimize H with

respect to ui(t) for J; of equation (4.4) (4.9)
oH
Sug = 0 i=1,2,3

1e4
N - . / ~o !



Fody ' o |
1 9H : :
ac " - -aTB-i— i = 0‘1-’2’3 | . . (4.10)
" Co~gtate ., ﬂli, sy - ,
differential ﬁ EE—'- = 3o i=1,2,3 . _ (4.11)-
equations - i . B
da . ) ' .
i 9H ’ .
L F& "y T b3 | | (4.12)

(+ boundary conditions)

Notice we have a once redundant ten-clement state vector.

X = [BO 81 Bz 63'5 w; Wy m'3 s h1 h, h:JT (4.13)
e ——
ET 9'I‘ hT
where
B is the Euler parameter vector which describes the inertial orientation of B
W {is the inertial angular velocity of B
“ "h 'is the momentum of the reaction wheels relative to B ((h = 0, for locked S

wheels)

The Euler parameters satisfy the constraint

gl g =1 . (4.14)

Their use makes the formulation universal, as opposed to the transcendental differen-
tial equations with a singularity which one obtains for any choice of Euler angles.

However, one often requires a transformation from Euler angles to Euler parameters;
for the 1-2-3 set of Euler angles (8, 6,, 64), the transformation is

ﬁo = ¢c(81/2) ¢(082/2) c(83/2) - s(01/2) s(82/2) s(B63/2)

B1 = 5(61/2) c(82/1) c(83/2) + c(B1/2) s(82/2) s(63/2)

(4.15)
B, = c(81/2) s(82/2) c(83/2) - $(61/2) c(62/2) s(683/2)
By = c(01/2) c(62/2) s(63/2) + s(01/2) s(02/2) c€03/2)
e() Zcos (), s8() = sin ()
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These results and similar dcvelopments for all. Lwelve c13551cal Euler angle- sets

are given in reference 4,

We must now consider the necesqarv conditions [1n addition to eaticfying equa- .
tions (4. 1) - (a4, 3)] for optimal maneuvers ¢f the configuration of figure Z. First,
one must define how to measure optimality. Equations (4.4) - (4.7) define four’
integral measures of cptimality (from vefs. 4, 5, 6). The first of these can be
interpreted as a positive measure of the control effort, while the remaining thre=2
penalize control derivative variations, As one might expect, the derivative
penalties lead to smocother optimal torques with lower frequency content; such con-
trols are attractive when generalized to flexible vchicles because they tend to excite
only lover modes (which are usually better modeled).

Notice the ten co-state equationé couple together with the ten state egmations
lequations (4.1) - (4.3)] to yleld a 20th-order system. Typically, the ten initial.
co~ftates nmust be determined iteratively to satisfy ten constraints at the final
time.

In order to discuss solution techaiques, it is useful to consider particular
mineuyvers, Four cases are now discussed. Table 1 summarizes some macroscopic
information concerning the four cases. Case 1 is the simplest; the solution of
this particular case is treated in detail in reference 2. Since the wheels are
locked, the system becomes a single rigid body with seven state variables
xT = [PO 81 B2 By wy wy M3J. The reader can readily verify that any set of 'pure
;pin' houndary cond‘tions causes all of the gyroscopic nonlinearities of equa-
tions (4.1), 4.2) and (4.10), (4.11) to vanish and results in a linear system which
is readily solved analytically; reference 2 gives the details. Thus, "boundary con-
dition embedding” is motivated as aa attraLLive way to solve the TPBVP by

cons {nuation. « . o Lo°

o
o

4.2 Four Maneuver Cases
For this case, table 2 gives the correspcnding Euler angle boundary conditions

and equation (4.16) gives the boundary conditfon embedding (homotopy chain) family
vf boundary conditions:
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0,0 @) o [0 ]
020 (o) ‘ 0 0
630 (o) 10 ‘ 0
) (q) : 0.01" 0.01
Wan (a) 0.005 | 0
Wy (@) 0.001 1o
-——=] =al-=--]+Q@ - -- - - (4.16)
8, (@ S5n/2 ' 5m/2 |
B, (@ | /3 ' 0
0, (@) ae | 0
Wi e (o) 0 - 0
Wye (a) 0 0
__w3f (oz)i _ L.0 | -0 i

We found {a,, Uy, .5 0} = {0, 0.0001, 0.25, 0.5, 0.75, 1} resulted in reliable
convergence for large variations in boundary conditions.

We note in passing that the o = 0 case is a pure spin single-axis rotation
about the El axis; this case can be solved analytically (ref. 2). We performed

. ~
other continuations corresponding to rotations about EZ and 23 and obtained the

same final solution. In this case, it was found that introducing the a-sequence
{al...aG} = {0, 0.001, 0.25, 0.50, 0.75, 1} and using Newton's method to iterate the

initial co-states {Al(to) Ao (tp) Ag(ty) vpoltp) Y1(tg) valty) Y3(t0)} = Qz converged

efficiently. Specifically, the iteration for Qo(ai) was initiated using the fol-
lowing starting procedure:

For a, 0.001, A,(a2) = A (a3), calculated from analytic solution

og = 0,25, Qo(a3) extrapolated linearly from the converged ﬁo(az) Qo(al)
Qs Og, Og, Qo(ai) extrapolated quadratically from the converged
éo(ai-l)' Ao(ai-Z)’ and Ao(ai-3)

As 1s evident from table 3, the convergence tolerance was held locse (10_2 maxi-
mum relative error of final boundary conditions) until the final (ag = 1) continua-
tion. This iteration process proved rather efficient as can be judged by the small
number of Newton iterations. The history of state and control variables on the con-
verged optimal maneuver is graphed in figure 3. Thus the final maneuver, which does .
not resemble a single-axis maneuver, is easily obtained via a continuation process
initiaced with the single-axis special case.

187




We now consider Case 2 (table 1). For this case, only the wheel along by, 1is
free :o rotate. The initial state is a "flat spin"; the -body rotates uniformly
about by (the largest axis of inertia); it is desired to transfer all angular

momentum to the wheel via a judicious motor torque u(t). This problem has received
considerable attention historically (e.g., refs. 9, 10) for the constant torque
(u(t) = constant) and constant relative momentum transfer (h(t) = constant) case.

In figure 4 (the right half of the figure), we display the constant torque

(u(t) = 0.005 Nem) maneuver published by Barba and Aubrun (ref, 9). The general
features of the maneuver are the following: ' o :

(i) The maneuver is nonlinear; a separatrix occurs around 1000 sec prior to
which the body by axis comes about the inertially fixed momentum vector

and after which the wheel axis (Ez) cones about the fixed momentum vector

(ii) Without damping or another torque mechanism, the momentum transfer
maneuver cannot be perfectly realized; i.e., the body cones at a nonzero

final mutation angle 0O between EZ and the inertially fixed angular
momentum vector

We address the issue as to whether a nonconstant torque would significantly improve
this flat-spin recovery maneuver. As is evident in the left half of figure 4, the
optimal maneuver is qualitatively similar to the Barba/Aubrun maneuver, but the final
mutation angle is decreased by 50 percent. The optimal torque history fluctuates
+10 percent about 0.05 N*m during the first 1000 seconds as is evident in figure 4,

The flat-spin recovery, while interesting, does not represent a very general
class of maneuvers, since only one final rest orientation is stable (and it cannot be
reached exactly without bringing other control or energy dissipation elements into
action). Cases 3 and 4 are provided to demonstrate maneuvers which bring a generally
rotating body to a state of rest in a general final orientation. These maneuvers
also demonstrate the practicality of calculating highly nonlinear maneuvers with up
to six control variables and of solving up to a 20th-order system of simultaneous
nonlinear equations.

Case 3 is a generalized optimal momentum transfer using all three wheels simul-
taneously. In essence, the objective is to transfer all of the angular momentum intc
the three wheels and leave the body at a prescribed inertial pointing. Figure 5
shows the state and control variable history. Notice, since this is an internal
torque maneuver, the total angular momentum is fixed; therefore, the final wheel spe¢'
can be calculated from the initially calculated angular momentum,

Case 4 is a maneuver involving both internal and external torques. The

criterion
t
1 f£r2, 2, 2
J = E-Jlo [}l + u,y + ué] dt

t
1 £ 2 2 Z
+5L0 [L1+L2+L3] dt
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is minimized. The ferminal boundary conditions require that the body be at rest and
all wheel speeds be reduced to zero. Thus this maneuver has the simultaneocus objec-—
tive of dumping the system momentum. As is evident in figure 6, the maneuver is
quite smooth and the terminal boundary conditions are satisfied. Cases 3 and 4 con-
trast sharply with Case 2; the nutational motion associated with a one-yheel configu-
ration is not evident due to (i) the lower wheel speeds, and (ii) the ability to
generate optimal torques in any desired direction.

The foregoing results clearly suggest that we can, at least for a wide spectrum
of problems, routinely determine optimal nonlinear maneuvers for spacecraft having a
moderate number of degrees of freedom. Of course, nonlinearity is only one compli-
cating issue for large flexible spacecraft; to what extent .can we generalize these
applications for vehicles where flexibility is a paramount concern? Specifically,
" can we apply similar methods to maneuver flexible vehicles, penalizing vibratory
motion en route and arresting certain modes upon arrival? As is evident in the
following developments, we have made some significant progress toward answering
these questions in the affirmative.

5.0 SLEWING MANEUVERS FOR. FLEXIBLE SPACECRAFT

The optimal control problem for maneuvering a vehicle of the shape shown in
figure 7 is complicated by the presence of the attached flexible appendages. Mache-
matically, the presence of flexibility in the plant description increases the number
of degrees of freedom required to model the motion of the vehicle (refs. 1, 3, 4,
and 11). As a result, in order to successfully maneuver the vehicle, the control
designer must have an accurate plant description which accounts for both rigid and
flexible effects. 1Im addition, when high angular rates are achieved during the
maneuvers, great care must be exercised in modelling the vehicle and formulating
systematic algorithms for solving the resulting nonlinear optimal control problems.
However, the issues of model truncation and control spillover effects are not dealt
with in this paper.

Section 6 develops an open-loop optimal control strategy for linear large-—angle
single-axis maneuver of a flexible spacecraft possessing a distributed control
system, Section 7 presents a closed-loop formulation for maneuvering flexible
vehicles. Section 8 develops a differential equation embedding continuation method
for solving nonlinear open-loop formulations of the flexible spacecraft equations of
motion. Example maneuvers are given in section 9.

i6'0 LINEAR LARGE-ANGLE MANEUVERS OF FLEXIBLE SPACECRAFT USING DISTRIBUTED CONTROL
6.1 Equations of Motion

The linear time~invariant form of the equation of motionm for the vehicle
depicted in figure 7 is given by (see refs. 4 and 11)

ME + KE = Pu (6.1)
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where

2 T T
0 I Y [—0 e
£= M= K =
- 1 M M 0 K
-6n  -mn nn
1w T ' T
P = u = [“122] r=1[1,1, ..., 1]
0 F
- (Nacxl)
d
[Fl,. = 4 =) .
i 1
3 dx P X =% -1 i=1, ..., n J=1, cesy N

where n 1is the number of flexible modes in the model, Nac is the number of
appendage controls, x4 denotes the point of application of the jth appendage con-
trol, © dis the rigid-body angle, n is the vector of modal amplitudes, wuj is
the rigid-body torque, u, is the vector of appendage control torques, r 1is the
radius of the rigid hub, the integral definitions of Mgn» Mpn» and Krm are given
in references 4 and 11, M 1is positive definite, and K is positive semidefinite.
In equation (6.1) it has been assumed that quadratic terms in the modal amplitudes,
amplitude rates, and angular velocity are vanishingly small and thus deleted.

For the optimal control problem, equation (6.1) is transformed to modal space
and cast in the first-order form given by

§ = As + Bu (6.2)
where
0 I EE
A = B = T §= t
-2 0 E'P EE
EME = I EIKE = A A = diag(0, A,, A A
g\y, 1* Mgs cers AL

where E 1is the normalized eigenvector matrix for M and K, and A 1s the diagonal
matr.x containing the eigenvalues of M and K.



6.2 Optimal Control Formulation

We seek an optimal solution of equation (6.2) which first satisfies the
prescribed terminal boundary conditions given by

0= [e(to) DT(':;O):'T o = [é(t:o) ﬁT(to)]T X | (6.3)

- feofed” n-fieo ded” e

and seccond, minimizes the performance index given by

. .
f
J=-1-f [uTW u+sTW s] dt (6.5)
2 t, L~ uu= " = TssT .

The selection of the performance index of equation (6.5) is arbitrary although made
for convenicnce. The elements of the state weighting matrix Wgg are selected to
make the state penalty term in J proportional to the kinetic and potential energy
of the vehicle. Since it is desirable to suppress the elastic deformations and
deformation rates at the end of the slew, we also impose the constraint

n(tf) = é(tf) = 0 in equation (6.4).

The control weight matrix is chosen to be diagonal with smaller weighting on the
rigid-body control torque than on the appendage control torque. This is because the
elastic appendage controllers are meant to serve as vibration suppressors while the
rigid hub controller is meant to execute most of the slewing maneuver. The penalty
on the rigid-body angle is also chosen to be small because the structure is required
to undergo a large-angle rotation. The rigid-body angle penalty is not set to zero
since this choice leads to numerical problems in computing the state transition
matrix. However, by adjusting the rigid-body angle penalty to be two to three orders
of magnitude smaller than the penalties on the modal amplitudes, amplitude rates, and
angular rates, the potential numerical problems can be overcome.

Using Pontryagin's principle (ref. 4), the necessary conditions defining the
optimal maneuver are given by equations (6.6), (6.7), and (6.8):

State:

. -1..T

s =As - BW, ~B'A (6.6)
Co-state:

: T

A -WSS§ -A") (6.7)_
Control:

=-1_T ’
u= -wuu B°A (6.8)
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" The solution for eqdations (6.6) and (6.7) is given by

' ' R} R
s(te) ae ) s(t,) A -su, "B
= e ° Q= ' 6.9)
A(eg) ' ACE,) W AT
Q(tf—to)

where e is the exponential matrix. Since §(t°) and §(tf) are known and

&(to) and l(tf) are unknown in equation (6.9), we need to solve for Aﬁto) to

Q(te-t
obtain the complete solution. Upon setting ¢ = e (tg-to)

solution for §(tf) is given by

the partiticned matrix,

8eg) = b .8(t)) + A (E.) o -  (6.10)

Solving equation (6.10) for the initial co-states ylelds

88—

ACe)) = [6,,] Hs(tg) = 6 s(t)) (6.11)

The optimal control time histories follow upon integrating equations (6.6) and (6.7)
subject to §(to) given by equation (6.3) and é(to) given by equation (6.11).
Exampie maneuvers are given in section 9.

7.0 LINEAR LARGE-ANGLE MANEUVERS OF FLEXIBLE SPACECRAFT USING FEEDBACK CONWTROL
7.1 Equations of Motion

The equations of motion given by equations (6.1) and (6.2) are used for the
plant description of the feedback control problem of this section.

7.2 Optimal Control Formulation
The optimal feedback control for slewing a flexible spacecraft differs funda-
mentally from the open-loop problem of section 6.2 in two ways. First, the instan-
taneous values for the state influence the applied contrel. Second, the boundary
conditions for the maneuver are specified initially and are free at the final time.
Breakwell (ref. 12) has recently presented two approaches for feedback control
of a flexible spacecraft. First, he presented a constant feedback gain approach.

Second, he developed a time-to-go formulation with time varying gains. The perfor-
mance index he selected is of the form

t
J -1 sT Ss. +. £ aTQs + ulRu| dt (7.1)
2 =f °Zf 0 2RI T DRE
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where S 1is the terminal state weighting matrix, - Q 1is the state weighting matrix,
and R 18 the control weighting matrix, Breakwell (ref. 13) has also developed a
distributed transfer function approach for the feedback control problem; however,
his distributed transfer function approach is not presented in this paper.
Breakwell's constant gain sclution is given by equation (7.2) and his time varying
solution is given by (7.3):

te = u= -R-lBTPw_s__ _ ' (7.2)

t,. << o y = R--]'BT[S_1 G,,(T) - ¢ (T)J-l'& () - S_l ¢ (Tﬂ s(c) (7.3)
£ t - f 22 12 11 f 21 - ¢

where -Pw is the solution to the algebraic matrix Riccati equation and T 1s the
time to go. Example maneuvers are given in section 9.

8.0 NONLINMEAR LARGE-ANGLE MANEUVERS OF FLEXIBLE SPACECRAFT USING DISTRIBUTED CONTROL
8.1 Equations of Motion

When high angular rates are ‘achieved during slewing maneuvers, the equation of
motion given by equation (6.1) must be modified in two ways. First, quadratic terms
in the angular velocity are retained in the equation of motion. Second, an arc length
correction is added to the kinetic and potentlal energy integrals in order to
properly account for second-order effects in the mass and stiffness distributions.

As a result, the nonlinear equation of motion given by equation (8.1) accounts for
the so-called centrifugal stiffening effect of the elastic appendages:

ME + KE =2 u (8.1)
where
8 1 M- 0 0
—en
E = M= K =
+ 6%
1 Yan nn 0 (Knn )
T
1 4r 1 u,
P= r = . (NarX1) u =
0 F 1 22

The integral definitions of M M

on® M*, and K can be found in references 4
and 11, | n

m* nn
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‘ Equation (8.1) is transformed into modal space and cast in the {irst-order form
for the optimal control problem using the coordinate trancformation defined in

equation- (6.2):
8 = A(s,a)s + B u _ . (8.2)
where

A21(§,a) (1]

and a 1is the continuation parameter which has been introduced to aid ian the solu-
tion of the nonlinear problem.

8.2 Optimal Control Formulation

We seek an optimal solution of equation (8.2) which satisfies the prescribed
terminal boundary conditicns given in equations (8.3) and (8.4) and minimizes the
performance index of equation (8.5).

T - - .
50 = [e(to) DT(tO)] EO - [e(to) Q(toﬂT (8.3)
T L - -
be = [e(tf) HT(th-] Ee = [e(cf) D(tfﬂr (8.4)
J=iftf Tw u+ s d (8.5)
2J¢, [2 ws T2 ss-s-:] t .

As part of the prescribed terminal boundary conditions in equation (8.4) we also
impose the comstraint that n(tg) = nlty) = 0.

Since equation (8.2) is nonlinear, a closed-form soluticn for the initial
co-states 1s not possible. However, the artificially introduced continuation param-
eter in equation (8.2) can be varied from 0 to 1 in a manner which embeds the non-
linear problem in a family of problems which includes the linear problem of section 6
(i.e., o = 0) as a special case, Thus the solution for a = 0 can be used to

establish a sequence of problems which converges to the nonlinear problem of interest
(namely, when a = 1),
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The necessary conditions defining the nonlinear optimal solution are given by
equations (8.6), (8.7), and (8.8).

State:’
. o -1.T .
8 = A(s,0)s — BW B°A (8.6)
Co-state:
A=-w_s - C(s,00) ~ 1 (8.7)
where ' . '
T
0 Ayq(s,)
C(s,0) =
T T.T
I -2a(e"splesL
Control:
-1 T .
u = —wuuB A . (8.8)

The partial derivatives of equations (8.6) and (8.7) required in the nonlinear state-_
transition matrix are given in references 4 and 11,

8.3 The Continuation Method Using Differential Equation Embedding

For the solution of the noplinear optimal control problem, we introduce the
sequence of continuation parameters {0 = o, < a, < eve ap = 1}, where p 1s either

preset or determined during the solution process. The operator equation defining the
optimal control solution is given by

. -1.T )
s - A(§,ai)§ + BwuuB A 0
F(s(r )20t )505) = A + W s + C(s,a)) =(0 (8.9)
Sf(desired) ~ S(8(Es)24 (8 ,0) 9
The continuation method of this section seeks the solution Ai+1(t0) of equa-
tion (8.10) using extrapolated estimates of éi+l based on back a-values.
E(a(t)ad gy (85)0ay0) = 0 (8.10)

The procedure is an iterative method since F 1is nonlinear; however, we have found
that only two to four intermediate a-values are typically required to solve the
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nonlinear problems of this section. In the nonlinear examples of section 9 the’
iterative solution for each a-value required at mast two or three iterations to
converge. : :

The differential correction strategy is to seek the correction vector Al
subject to the terminal constraint given by :

§f(desired) - §Qo +‘é&’ tf) =0 Ao = é(to) ' (8.11)
for a specific a-value. Upon linearizing equation (8.11) we obtain equation (8.12),
vhere s denotes the numerically integrated solution of equation (8.6) using the
approximate initial co-state Ao

, ~ 3§T T _ o o .
§f(desired) - By A =0 (8.12)
. ~o tf

The equation defining the solution for AA is then given by

T T
9s )
aéo tg = A—sf’ A'—Bf = 'S'f(desired) -8 (8.13)

The solution for AX in equation (8.13) is easily obtained using Gaussian
elimination.

For each ag~-value in equation (8.10), equation (8.13) is iteratively solved
until the norm of éif is less than some small value, that is Iléffll < €., Then a

is incrementally increased, and the solution for the intermediate a-value is
obtained from equation (8.13). The process continues until o = 1 and the non-
linear problem of interest has been solved. The numerical algorithm is summarized
in figure 8.

9.0 EXAMPLE MANEUVERS

Table 4 summarizes the boundary conditions for the example maneuvers of this
section. The structural parameters for the model used in Cases 1, 2, 3, 6, and 7
are given in references 4 and 11, and those for Cases 4 and 5 are shown in refer-
ence 12,

Cases 1 and 2 (figs. 9 and 10) demonstrate that by adding additional controls
on the structure the system performance can be improved. In this particular case,
the first mode peak euplitude is decreased by 9 percent and the rigid-body peak con-
trol torque is decreased by 4 percent. -
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- Case 3 (fig. 11) presents a ten-mode case using distributed control and
demonstrates that all ten modal amplitudes and amplitude rates (not shown) have

. satisfied the prescribed boundary conditions.

Case 4 (fig. 12) presents the constant feedback gain solution of reference 12
and indicates at least for tLe one-mode case that the vehicle's controlled perfor-
mance is not unreasonable,

Case 5 (fig. 13) presents the time-varying feedback gain solution of refer-
ence 12, We see that the boundary conditions are satisfied and that for large 8¢

the control time history is very similar to the open-loop solution.

" Case 6 (fig. 14) presents a somewhat counter—intuitive spin-reversal maneuver
where the vehicle backs up before moving forward. It can be shown (refs. 4 and 11)
that the spin-reversal phenomenon is the result of fixing either the maneuver time
or the final maneuver angle.

Case.?7 (fig. 15) presents a stressing spin-reveisal maneuver where the peak
modal amplitudes for the nonlinear maneuver differ from the linear solution by about
17 percent to 41 percent. In particular, the first mode had small amplitudes while
the higher modes had larger amplitudes when compared with the linear solution. The
shape of the modal amplitude responses is alsgo slightly different from the linear
solution.
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TABLE 1. - FOUR LARGE-ANGLE MANEUVERS OF THE VEHICLE IN FIGURE 2

20

PERFORMANCE SYSTEM INITIAL _ DESIRED CONTINUATION WUMERICAL METHOD
CASE DESCRIPTION IHDEX PARAMETERS CONDITIONS FINAL CONDITIONS )  METHOD 10 SoLve_ODfs
GENERAL MANEUYER f' a,(ty)] [sv/2
oF A siuoLe v ufegede () fesasi o o) fo L CHDITION | COMECTIoNS OF Sucs
R iy ° 1]=]es.07 ot ) =fo eaitel =) ] | Dmcooins RO RUTTA
N -|=185. { - - £
ts:::: 2'{' 1‘ 13.565 ozuo) 0 attel] [ sotions
oL .
s L t .
3o wlte) = @ ALSO SOLYED USixG
WHEELS LOCKED - [0l v/s t, » 100 $
. f VEIGHTED RESTDUAL
alty) =1 oos METHOD (REF. 5}
. 001 “METHOD OF PARTICU-
LAR SOLUTJONS®
. t, =05 (TEFS. S AND 6)
OPTINAL J‘f 2 _ wity) +'0 FIXED NEWTOX DIFFEPENTIAL
“FLAT SPIN ¢ Y Ot SAME AS ABOVE wit) o = = POINT CORRECTIONS OF SUC-
RECOVERY® ] EXCEPT *2° ] (el T 8 ALGORITHM | CESSIVE -
USING DHLY THE T WHEEL IS = |° (8¢ RUNGE-KUTTA
. PITCH WHEEL + w (tele(ty) NOT LOCKED; 2 176 r/3] te = 4000 S SOLUTIONS
Jd, = J .05 kg m
STATE: w by . (L) hid (4 h(t)=0 <
- W el et 5(t, 11205ED ALSO SOLYED USING
conTROL: [ratte) -] 1 43(to! eos TRANSYLRSATILITY s v
- 20 0 t0 CONDITIONS: "KETHODS OF PARTI.
CULAR SOLUTIONS®
Altg) =0 (REFS.'S AXD 6)
u(t() =0
) 642700
%;w '"I“'E':L 1) [es.a1ses o®f gee ) |ladzazs 1 RIELE'S "HETHOD OF
HANEUY L = |.aazzis! | aqt,) efo PARTICULAR SOLUTIONS®
ust 3 wEELs | LT e ey e [l o] es.or vt 1H I R QUASIL IREARIZATION "
o 0 KETHOU, AS
) STATE: g 15] hra.ses . [.%Sm] ) —— |oevecoen 1
it ) =l wlty) » 0 REFS 5 AND ¢
. ulty wite) = 0
CONTROL:  u 3o e 05 kgw .001
0 h(t,) = K
4o T NG | _H hitg) =¥
** o
0PTIMAL Y 2 2 2 . 1 43047 HIELE'S “METHOD OF
INTERNALZEXTERAL fl “‘l sl et e {1 10 kg m £(tg) */0 :'“ 1. .70106 PARTICULAR SOLUTIONS™,
107uE ° H lo 244" 09230 QUASILILLARIZATION
HANELVER 1,[= |6.33323]x105 0. 156098 BLTHOD, AS
] — 2,02, .2 1,] [9.16666 01 r/ — | RS ?Egul:
N . . 01 r/s RE
STATE: B8.u.h 'I‘o (u] * v + uj) @t \ ulty) - {%§ ] wlte) = 0
CONTROL : ut J' s JeSkgn * !‘.“’f) .p
S NMS
hley) =32
3
nnl
“
vl
<
:
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. TABLE 2.- RIGID BODY MANEUVER (CASE 1)

(1. I,. 13) = (1, 0.833333, 0.916667) x10% kg m?

DESIRED FINAL STATE

INITIAL STATE (t = O s) (tf = 100 s)
o 8(tg) =05 =0 0y(tg) = B¢ = 5772
1-2-3 Euler _ _ - -
Angles q Byt =08p5 =0 Op(te) = Opp = /3
. B5(t ) =654 = 0 B5(te) = 8¢ = T/4
3 wl(to) =W = 0.01 r/s ml(tf) = wp = 0
Orthogonal t.) 0
Ang. Vel. q w,(t )=w,, = 0.005 w,(t,) = w,p =
Components 270" 20 2t f 2f
\ w3(t°) =wyg = 0.001 w3(tf) = W = o]

TABLE 3.- BOUNDARY CONDITION CONTINUATION FOR CASE 1
[From ref. 4]

a, = 0 0.001 0.25 0.50 0.75 1.00
Tolerace® - 10-2 10-2 10-2 10-2 10-3
No. of iterations — 1 4 8 6 4
Initial 8,(15) 0 [} 1] 0 4] 0
state 0,(15) 0 0 0 0 [ 0
8;(10) 1] [4] 0 0 0 0
w, (1) 0.01 rad/s 0.0100 0.0100 0.0100 0.0100 0.01
wy(fp) 0 0.00005 0.00125 0.00250 0.00375 0.005
wy (1p) 0 0.00001 0.00025 0.00050 0.00075 0.001
Final 8,(,) 5x/2 5x/2 5x/2 S§x/2 Sx/2 7.85397
state (m5x/2)
0,(1y) ] 0.01048 0.260829 0.52249 0.78471 1.04731
(=mx/3)
(1) 0 0.07857 0.19620 0.39248 0.58909 0.78546
(mx/4)
w (1) 0 0 0 0 0 (1]
w, (fy) 0 0 (1] 0 0 o
w, () 0 [ [ 0 (1] 0
Coaverged \, (1) -4.3124 -4.31237 - 4.22029 - 4.01835 —3.81454 —-3.64945
co-state A, (1) o -0.01576 -0.37601 -0.67991 ~0.91423 ~1.10589
(x10%) Ay (1} 0 ~0.03034 -0.73712} —1.34988 - 1.80119 -2.13870
Yelly) 0 . 0 ] 0 1] (/]
¥ (ly) -0.17649 -0.17649 -0.17685 ~0.17545 -0.17082 -0.16634
12 (1) [} ~0.00053 -0.01501 -0.02674 -0.034%6 -0.04117
¥ (l) 0 - 0.00039 -0.01101 -0.02672 -0.04411 - 0.05838

®Maximum telative error in w's (normalized by 0.001)
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TABLE 4.~ DESCRIPTION OF TEST CASE MANEUVERS

Case Qualitative Description No. of °o' rad éo rad/s 0y rad éf, rad/s|¥o. of Huu Hss
No. mdes n Contrels
Nee
1 Rest-to-Rest Manuever 2 0 0 " 0 .1 1 10 3Te
tem 60 sec
2 Rest-to-Rest Manuever 2 o 0 . o 5 T 10-°T
tf = 60 sec
3 Rest-to-Rest Manuever 10 0 0 x/18 o 5 T 10757
te = 5 sec :
4 Rest-to-Rest Manuever 1 0 0 /18 0 1 1 1
te s 5 sec
5 Rest-to-Rest Manuever 1 [ 0 x/18 0 1 1 1
Time Varying Feedback
te = 5 sec
6 Spin-Up Maneuver 3 0 0 2% 0.5 5 1 10777
tf = 60 sec
7 Nonlinear Spin Reversal 3 4] -0.5 2% 0.5 5 T 10-°7
te » 60 sac
~ .
« 1 = diag{10°3, 1, ..., 1) (Nc’Nc)
o T « diag(1072, 1, ..., 1) (2(ne1) : 2(ne1))
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PHYSICAL PROBLEM PONTRYAGIN'S PRINCIPLE TWO-POINT-BOUNDARY
_— VALUE-PROBLEM (TPBVP)

SYSTEM STATE ODE'S - HAMILTONIAN FIND 30 SO THAT THE

% = f(t,x,u) H=F+Alf ' SOLUTIONS OF
FIND OPTIMAL CONTROL u(t) CO-STATE EQUATIONS STATE  x = F(t.x,})
10 MINIMIZE - {ﬁ}T CO-STATE 3 = 6(t,x.0)
- 9x
t x
£ g,
J = of{xp) + [ F{t,x,u)dt
S Y e MINIMIZE H w.r.t. INITIATING AT
' ' ADMISSIBLE u(t) AT xlty) = x5
SUBJECT TO (FOR EXAMPLE) ¥
THE BOUNDARY CONDITIONS EACH INSTANT - THIS Altg) = X
YIELDS
x(tg) = x4 TERMINATE AT
OPTIMAL\ _
8(t) = {controL ) = 8(tsx:2)
x(tg) = x¢ x(te) = x¢

Figure 1.- The optimal maneuver necessary conditions and the associated TPBVP.

4T ASYMMETRIC

MAIN BODY B8
;92
gmsit
Normal
Wheel Momenta: hi =J Qi;
A 3 - l Y i=1,2,3
b 2 ' : .
23 ’ B's Angular Velocity: (w,,w,,uw,)
orpital * "x,'r\__;_/ : 1'92°%3
velocity | - Euler Parameters
A __,” orienting B: (80,81,82.83)
‘ Internal (Motor)
. Torques: (ulyuz,u3)

External Torgues: ‘LI’LZ’L3)

Figure 2.- Dynamics of a four-body configuration with internal and external torques,
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Optimal maneuver of Vadali & Junkins [ref.
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Figure 4.~ A comparison of two flat-spin recovery maneuvers.

Maneuver of Barba & Aubrun [ref. '9]
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Figure 5.- Optimal internal torque momentum transfer maneuver.
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?igure 7.~ Modal structure.

GIVEN: s(0), s(t,)
APPROXIMATE 2(0) FROM €Q. (6.11)

A
INCREMENT o
B
. SOLVE THE DIFFERENTIAL EQUATIONS OF EQ. (B.6) and (8.7) TO DETERMINE

5 = slM0).tp)
AND DETCRMINE THE PARTIAL DERIVATIVES OF EQ. (8.12)

CALCULATE THE RESIDUAL VECTOR ss,
VIA QUASI-NEWTON METHODS
CALCULATE ||ase ||

IF SMALL AND q = ] ————————»END
IF SMALL AND 0 # } —~—————— A

IF LARGE, CONTINUE
CALCULATE ax FROM EQ. (8.13)

APPLY CORRECTIONS
A(0) = A(0) + mn

!

Figure 8.- Differential correction algorithm for the differential embedding method.
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Figure 9.- Case 1, 2-mode case, rest-to-rest maneuver, 1 control.
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Figure 13.- Case 5, l-mode case, rest
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Figure 15.- Case 7, 3 modes, nonlinear spin—revei:sal maneuver, 5 controls.




1 Report No. Govommonl Acc 3. Recipient’s Catalog No.
NASA CP-2258 Z,f;b 8’ /] 7 -

“ 4. Title a0d Subtitle . 5. Report Date
.February 1983

MODELING, ANALYSIS, AND OPTIMIZATION ISSUES S Pectorming Orairarion Gode
FOR LARGE SPiCE STRUCTURES e 506-53-57.08

) 7 Aulhov(s) - . ) 8. Performing Orgmullon Report No.
Larry D. Pinson, Anthony K. Amos, and V. B. Venkayya, L-15564
compilers

10. Work Unit No.

9. P«lon;ﬁnq-OrganinxioeNa.r.ne and Addrems
NASA Langley Research Center o Co G :
Hampton, Virginia 23665 _ - Contract or Grant No.

13. Typz of Report and Period Covered

2. Sponsoring Agency Name and Address -
National Aeronautics and Space Administration —
Washington, D.C. 20546 14. Spoasoring Agency Code

Conference Publication

Alr Force Office of Scierntific Research
Bolling Air Force Base
Washington, D.C.

Air Force Wright Aeronautical Laboratories
Wright Patterson Air Force Base, Ohio
15, Supplementary Notes

Larry D. Pinson: NASA Langley Research Center, Hampton, Virginia

Anthony K. Amos: Air Force Office of Scientific Research, Bolling Air Force Base,
Washington, D.C.

V. B. Venkayya: Air Force Wright Aeronautical Laboratories, Wright Patterson Air
Force Base, Ohice

16. Abstract e

This document contains the proceedings of the Air Force/NASA Workshop on Modeling,
Arlalysis, and Optimization Issues for Large Space Structures held in Williamsburg,
Virginia, May 13-14, 1982. - The workshop was jointly sponsored by NASA Langley
Research Center, the Air Force Office of Scientific Research, and the Air Force
Wright Aeronautical Laboratories. The theme of the workshop was modeling, analysis,
and optimization of large space structures, including structure-control interaction.
Speakers were drawn primarily from industry, with participation from universities
and government. The workshop was orgaaized into three se~sions: mathematical
modeling, analysis methodology, and optimization for controllability. Results of
the workshop were discussed in a final session. Summaries of each session were
presented by session technical‘secretaries, and general discussion followed.

17. Key Words (Suggested by Authorls)) s 18. Distribution Statement
Structurs—control interaction -
Large space structures
Thermal analysis Unclassified ~ Unlimited
Structural modeling :

Subject Category 15

19. Soc\-ritv Classif. Vtoi this report) 29. Security Classif. lof this page) 21, No. of Pages - | 22, Price
Unclassified Unclassified 230 ' All

For sale by the Nationai Technical Information Service, Springtield, Virginia 22161 MASA-Langley, 1983

~ o —— Y PP . )






